

# Microwave Field-Effect Transistors—1976

CHARLES A. LIECHTI, SENIOR MEMBER, IEEE

**Abstract**—A review of recent and current work on microwave FET's and amplifiers is presented, and an extensive bibliography of recent articles is appended (250 references). First, the various FET structures (MESFET's, JFET's, and IGFET's) and their performances are reviewed. Second, the principle of operation is outlined for Si- and GaAs-MESFET's; the basic device physics, equivalent circuit, high-frequency limitations, and noise behavior are treated. Third, the design principles and performance of microwave MESFET amplifiers are summarized.

## I. INTRODUCTION

IT TOOK seventeen years from the initial introduction of the bipolar transistor in 1948 until microwave transistors with practical gain and noise figure became available. In 1965 germanium transistors invaded *L* band with noise figures under 6 dB. A milestone was reached in 1968 when the AT&T System adopted the balanced transistor amplifier, developed by Engelbrecht and Kurokawa [A1], for use in its *S*- and *C*-band microwave communication links. Since 1968 significant progress has been made in obtaining low-noise performance and high-power capability from bipolar transistors for frequencies reaching up to *X* band. At 8 GHz a silicon n-p-n transistor with 3.9-dB noise figure and 3.8-dB associated gain [A2], and a power transistor with 1-W CW output power<sup>1</sup> and 6-dB power gain [A3] have been reported. At 2 GHz a single (silicon) transistor chip delivers up to 30-W CW output power with 7-dB power gain and 32-percent power-added efficiency [A7]. Bipolar transistors fabricated in GaAs are still in an early stage of development [A8]–[A10].

By 1971, however, breakthroughs had been made in the development of field-effect transistors. Today, GaAs metal semiconductor field-effect transistors (MESFET's) have higher gain, higher power-amplification efficiency, and lower noise figure than bipolar transistors above 4 GHz. More significant is the fact that FET's promise a great deal of potential for further advances. Substantial progress can be expected in the near future because of the following.

1) A large variety of FET structures (MESFET, JFET, IGFET) are suitable for microwave amplification and power generation, and some promising candidates are only in an early stage of development.

2) A variety of semiconductor materials (GaAs, InP,  $In_xGa_{1-x}As$ ,  $InAs_xP_{1-x}$ ) with majority-carrier transport properties<sup>2</sup> superior to silicon are competing for application in FET's [F5].

3) Further miniaturization to submicron dimensions can be realized in most FET structures.

Manuscript received October 1, 1975; revised January 15, 1976.

The author is with the Solid State Laboratory, Hewlett-Packard Company, Palo Alto, CA 94304.

<sup>1</sup> Combined power from two chips.

<sup>2</sup> Minority-carrier lifetime and mobility are of no concern in unipolar transistors. Therefore, materials with optimized transport properties for electrons but poor performance for holes can be chosen.

4) Monolithic integration of circuits on semi-insulating substrates enables device isolation with low parasitic capacitances, low-loss interconnections, and high packing density.

This paper reviews recent and current developments in high-frequency FET's and FET amplifiers.<sup>3</sup> In Section II the various microwave FET structures are discussed, and their performance characteristics are summarized. Section III gives an introduction to the device physics, the small-signal characteristics, and the noise behavior of MESFET's. In Section IV the design principles and the performance of microwave amplifiers are reviewed. An extensive bibliography of recent articles is appended. Because of limited space, topics such as fabrication, packaging, reliability, oscillators, mixers, modulators, and digital applications are not treated here.

## II. MICROWAVE FET STRUCTURES AND THEIR PERFORMANCE

Today MESFET's, p-n junction FET's (JFET's), and insulated-gate FET's (IGFET's) are used at microwave frequencies [B2]. The cross sections of the various FET structures are illustrated in Fig. 1. Their performance characteristics are tabulated in Table I. Fig. 1 serves as a guide for the following discussion; i.e., first the MESFET's, then the JFET's, and finally the IGFET's are described.

### A. MESFET

In 1969 Middelhoek realized a silicon MESFET with 1- $\mu$ m gate length by projection masking [X1], [X2]. This FET had a 12-GHz maximum frequency of oscillation [C1] which was considerably higher than for previously known FET's and comparable to  $f_{max}$  of the best bipolar transistors at that time. The next significant step was the fabrication of 1- $\mu$ m MESFET's on GaAs. As a result, FET's with  $f_{max}$  of 50 GHz and useful gain up to 18 GHz became available in 1971 [C2]–[C6]. This substantial improvement in device performance is due to the following reasons. 1) in GaAs the conduction electrons have a six times larger mobility and a two times larger peak drift velocity than in silicon [F1]. Therefore, parasitic resistances are smaller, the transconductance is larger, and the transit time of electrons in the high-field region is shorter. 2) The active layer is grown on a semi-insulating GaAs substrate with resistivity larger than  $10^7 \Omega \cdot \text{cm}$ . The large parasitic capacitance of the gate bonding pad can thus be eliminated by positioning the pad on the substrate.

In 1972 it became apparent that GaAs-MESFET's are capable of very low-noise amplification [C4]–[C6]. Liechti

<sup>3</sup> The reader is also referred to a review paper on the same topic by Turner [B1].

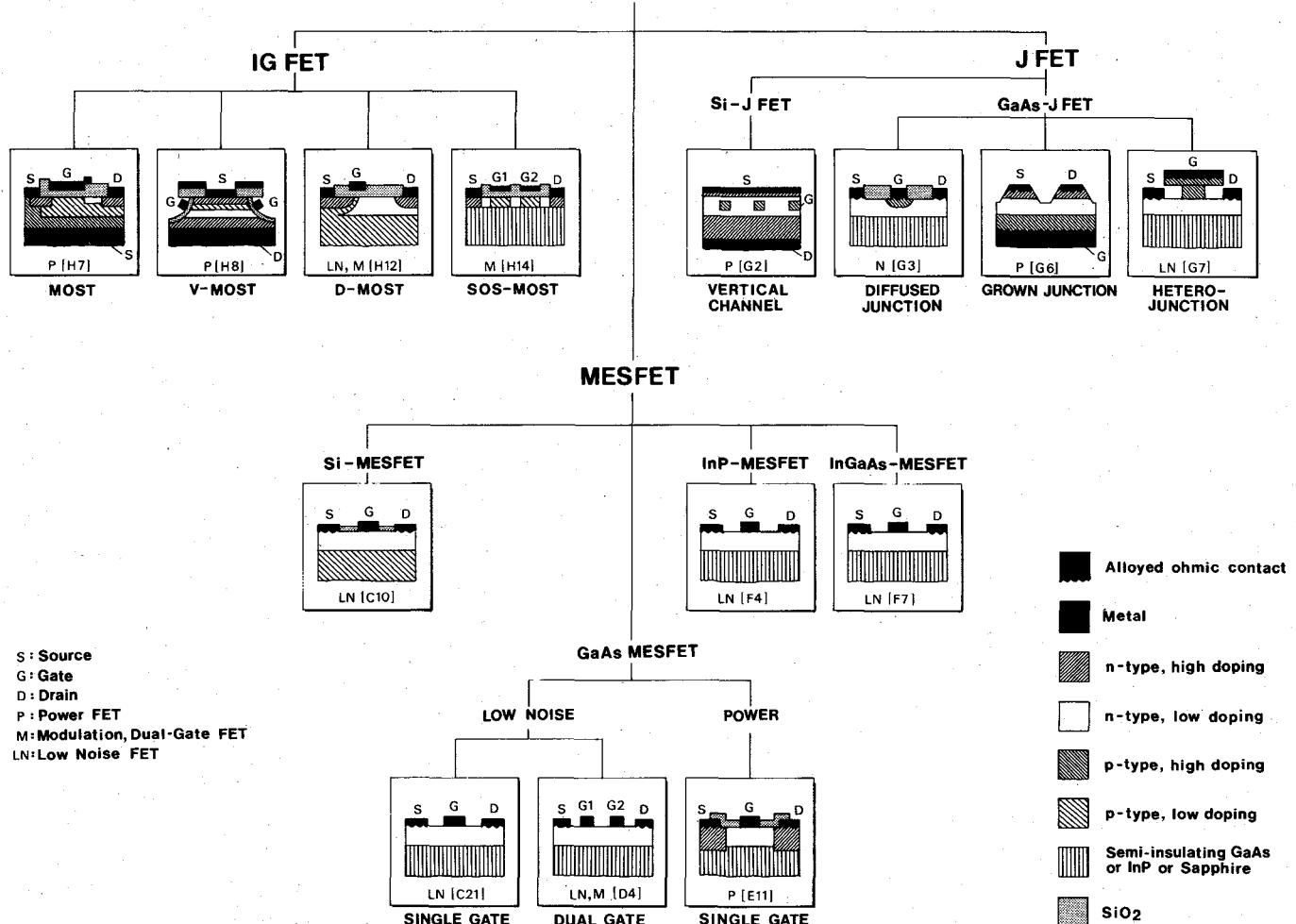



Fig. 1. This "family tree" of microwave FET's shows the cross sections of the various FET structures. Their performance characteristics are listed in Table I.

TABLE I  
PERFORMANCE DATA OF THE MICROWAVE FET STRUCTURE SHOWN IN FIG. 1

| Type*          | Semi-conductor | Single/<br>Dual<br>Gate | Channel |                |               | Appli-<br>cation* | Pre-<br>frequency<br>(GHz) | Output<br>Power<br>CW<br>(W) | Assoc.<br>Power<br>Gain<br>(dB) | Small<br>Signal<br>Gain<br>(dB) | Power**<br>Added<br>Effic.<br>(%) | Noise<br>Figure<br>(dB) | Assoc.<br>Gain<br>(dB) | Casc.<br>Noise<br>Figure†<br>(dB) | Max.<br>Gain<br>(dB) | Reference |       |       |       |
|----------------|----------------|-------------------------|---------|----------------|---------------|-------------------|----------------------------|------------------------------|---------------------------------|---------------------------------|-----------------------------------|-------------------------|------------------------|-----------------------------------|----------------------|-----------|-------|-------|-------|
|                |                |                         | Type    | Length<br>(μm) | Width<br>(mm) |                   |                            |                              |                                 |                                 |                                   |                         |                        |                                   |                      |           |       |       |       |
| <b>MESFET</b>  |                |                         |         |                |               |                   |                            |                              |                                 |                                 |                                   |                         |                        |                                   |                      |           |       |       |       |
| Silicon        | Si             | SG                      | n       | 0.5            |               | LN                | 10                         |                              |                                 |                                 |                                   |                         |                        |                                   | 5.8                  | 5.9       | [C10] |       |       |
| LN SG GaAs     | GaAs           | SG                      | n       | 0.5            |               | LN                | 10                         |                              |                                 |                                 |                                   |                         |                        |                                   | 2.7                  | 10.5      | 3.1   | 13    | [C21] |
| LN SG GaAs     | GaAs           | SG                      | n       | 1              |               | LN                | 10                         |                              |                                 |                                 |                                   |                         |                        |                                   | 3.2                  | 8.0       | 3.6   | 10    | [D4]  |
| LN DG GaAs     | GaAs           | DG                      | n       | 1              |               | LN, M             | 10                         |                              |                                 |                                 |                                   |                         |                        |                                   | 4.0                  | 12        | 4.2   | 18    | [D4]  |
| P SG GaAs      | GaAs           | SG                      | n       | 1.5            | 5.2           | P                 | 8                          | 2.2                          | 3.2                             | 4.2                             | 22                                |                         |                        |                                   |                      |           |       |       | [E11] |
| P SG GaAs      | GaAs           | SG                      | n       | 1.2            | 0.6           | P                 | 22                         | 0.14                         | 4.8                             | 5.6                             | 9                                 |                         |                        |                                   |                      |           |       |       | [E17] |
| LN SG InP      | InP            | SG                      | n       | 1              |               | LN                | 10                         |                              |                                 |                                 |                                   |                         |                        |                                   | 4.7                  | 6.6       | 5.4   | 7.8   | [F4]  |
| LN SG InGaAs   | InGaAs         | SG                      | n       | 1              |               | LN                | 7                          |                              |                                 |                                 |                                   |                         |                        |                                   | 5.7                  | 5.0       | 7.0   | 18    | [F7]  |
| <b>JFET</b>    |                |                         |         |                |               |                   |                            |                              |                                 |                                 |                                   |                         |                        |                                   |                      |           |       |       |       |
| Silicon        | Si             | SG                      | n       | 1              | 1.8           | P                 | 2.7                        | 0.2                          | 6.0                             |                                 | 19                                |                         |                        |                                   |                      |           |       |       | [G2]  |
| Diff. Junction | GaAs           | SG                      | n       | 2              |               | LN                | 4                          |                              |                                 |                                 |                                   |                         |                        |                                   | 2.5                  | 10        | 2.7   | 10    | [G3]  |
| Grown Junction | GaAs           | SG                      | n       | 1.5            | 6.1           | P                 | 6                          | 1.0                          | 6.0                             | 7.0                             | 26                                |                         |                        |                                   |                      |           |       |       | [G6]  |
| Heterojunction | GaAs           | SG                      | n       | 2              |               | LN                |                            |                              |                                 |                                 |                                   |                         |                        |                                   |                      |           |       |       | [G7]  |
| <b>IGFET</b>   |                |                         |         |                |               |                   |                            |                              |                                 |                                 |                                   |                         |                        |                                   |                      |           |       |       |       |
| MOST           | Si             | SG                      | n       | 5              | 20            | P                 | 0.7                        | 16                           | 6                               | 10                              | 26                                |                         |                        |                                   |                      |           |       |       | [H7]  |
| V-MOST         | Si             | SG                      | n       | 1              | 18            | P                 | 2                          | 4.0                          | 5                               | 6                               | 32                                |                         |                        |                                   |                      |           |       |       | [H9]  |
| SG D-MOST      | Si             | SG                      | n       | 1              |               | LN                | 1                          |                              |                                 |                                 |                                   |                         |                        |                                   | 3.0                  | 9.0       | 3.3   | -     | [H13] |
| DG D-MOST      | Si             | DG                      | n       | 1              |               | LN, M             | 1                          |                              |                                 |                                 |                                   |                         |                        |                                   | 4.5                  | 14        | 4.6   | 15    | [H13] |
| DG SOS-MOST    | Si             | DG                      | n       | 4              |               | M                 | 0.5                        |                              |                                 |                                 |                                   |                         |                        |                                   |                      |           | 25    | [H14] |       |

\* LN - low noise amplification; P - power amplification; M - modulation, switching or amplification with controlled gain; SG - single-gate FET; DG - dual-gate FET.

\*\* The power added efficiency is defined as the RF output power minus the RF input power divided by the dissipated dc power.

† The cascaded noise figure is defined by Eq. (15).

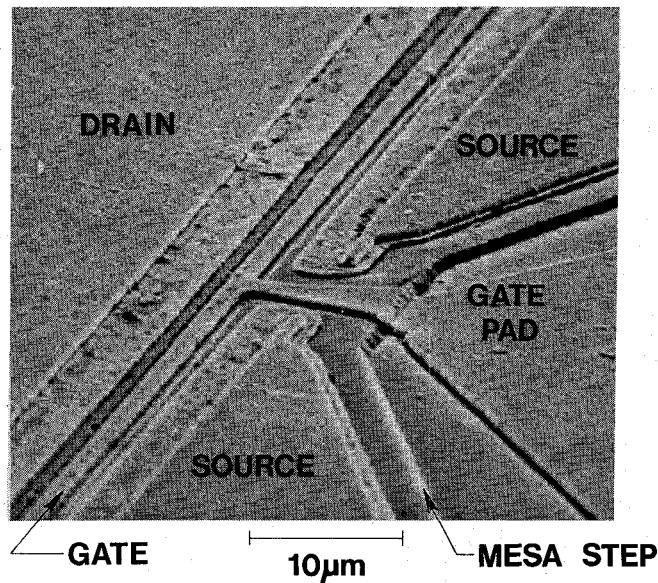



Fig. 2. This scanning electron micrograph shows the center section of a low-noise MESFET. The source and drain are alloyed ohmic contacts to the underlying conductive layer. The gate is the narrow metal stripe forming a Schottky contact. The width of the depletion layer under the gate controls the current flowing from drain to source. To the right, the gate metal runs over a mesa step (edge of the conductive layer) and widens on the semi-insulating substrate into a large bonding pad.

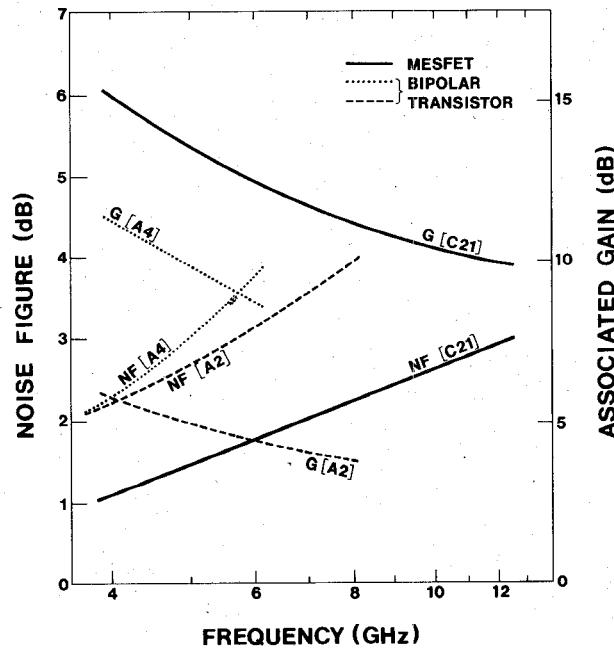



Fig. 3. Lowest reported noise figures and associated gains of microwave transistors are plotted versus frequency. The GaAs-MESFET reported by Ogawa *et al.* [C21] has 0.5- $\mu$ m gate length. The dashed line represents the Si bipolar transistor with the lowest published noise figure [A2]. The bipolar transistor with the dotted line [A4] has a considerably higher gain.

*et al.* [C5] reported a noise figure of 3.5 dB with 6.6-dB associated gain at 10 GHz. Baechtold [M7], [M8] proposed a noise model that agrees well with measurements taking carrier velocity saturation and intervalley scattering into account. In the past few years, small-signal GaAs-MESFET's have been fabricated and characterized by various laboratories [C7]–[C28]. A scanning-electron micrograph of a typical low-noise MESFET is shown in Fig. 2. Lowest re-

ported noise figures and associated gains are plotted in Fig. 3 versus frequency. Best noise performance is achieved with 1) a high-purity buffer layer between the substrate and the active layer [C26]; 2) a high doping level in the active n-layer ( $2.5 \times 10^{17} \text{ cm}^{-3}$  [C21]); 3) smallest possible source and gate-metal resistance [C21], [C22]; and 4) short gate length (0.5  $\mu$ m [C10], [C21]).

A MESFET structure with two gates is shown schematically

in Fig. 1. This FET has a higher gain and a lower feedback capacitance than the single-gate counterpart [C21], [D1]–[D7]. In addition, the gain can be controlled over a wide range (44 dB [D4]) by varying the dc bias of the second gate. This feature can be used for automatic gain control in amplifiers [D6]. The gain modulation response is very fast. Pulse-amplitude modulation of an RF carrier with less than 100-ps fall and rise times has been demonstrated [D3], [D4].

The GaAs-MESFET is not limited to small-signal low-noise applications. The first power MESFET's appeared in 1973 and were of planar construction as shown in Fig. 4. Fukuta *et al.* [E1] designed a MESFET with 20 gates, each 1  $\mu\text{m}$  long and 400  $\mu\text{m}$  wide, operated in parallel and interconnected with a second metallization layer. At 2 GHz this MESFET exhibited 1.6-W output power<sup>4</sup> with 5-dB power gain and 21-percent power-added efficiency. At the same time, Napoli *et al.* [E2] presented a power transistor with self-aligned<sup>5</sup> gates [Fig. 4(c)]. Multiple gate, source, and drain pads had to be interconnected with bonding wires. The planar power FET has been further developed by various laboratories [E3]–[E19]. The techniques yielding high-power capability per unit gate width are:

- 1) the use of a high-resistivity epitaxial buffer layer to isolate the active layer from the bulk-grown substrate [E16];
- 2) the addition of inlaid  $n^+$ -regions under the source and drain electrodes, shown in Fig. 4(b), to increase the drain-source breakdown voltage and decrease the parasitic contact resistances [E11];
- 3) the design of short gate branches to prevent current crowding and to lower the gate-metal resistance [E11];
- 4) the flip-chip mounting of the transistor to decrease the thermal resistance and the source-to-ground lead inductance [E7], [E15].

A photomicrograph of a power MESFET from Fujitsu Laboratories [E9] with 104 gate branches, each 1.5  $\mu\text{m}$  long and 50  $\mu\text{m}$  wide, is shown in Fig. 5. Recently reported performance data of power MESFET's are summarized in Table II. The output powers from single chips, operated CW Class A, range from 4 W at 4 GHz to 0.14 W at 22 GHz and power-added efficiencies vary between 44 and 9 percent. Highest efficiency has been obtained by Huang *et al.* [E18] in Class B operation; 68 percent at 4 GHz and 41 percent at 8 GHz have been measured. These are the highest reported efficiencies of all microwave solid-state devices in this frequency range. The performance figure of merit  $M_F$  proposed by Druker *et al.* [E15] is also listed in Table II.  $M_F$  measures the added RF power per unit gate width times the square of the operating frequency. The MESFET

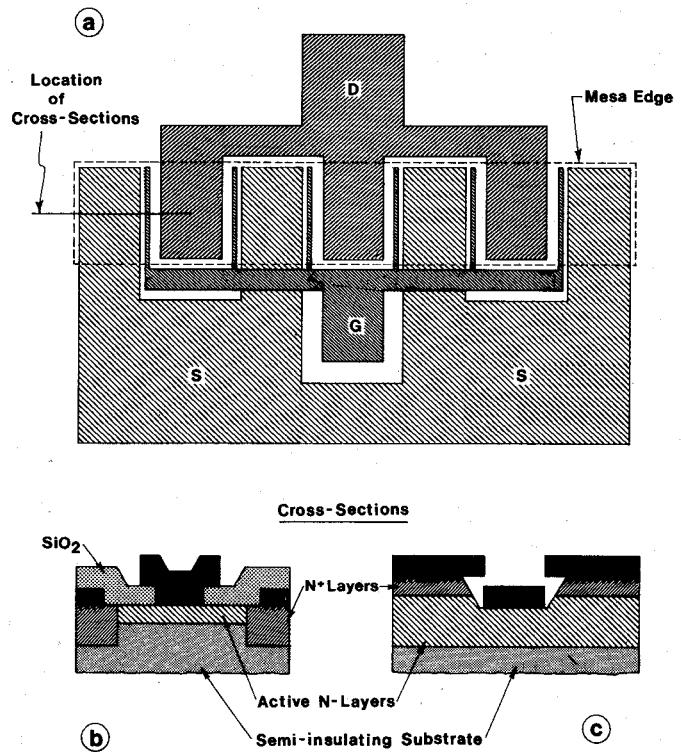



Fig. 4. (a) Illustrates schematically the metallization layout of the planar power MESFET shown in Fig. 5. The gate branches are interconnected with a metal line that crosses over the source. Multigate MESFET's with cross sections (b) [E11] and (c) [E1], [E12]–[E18] have been realized.

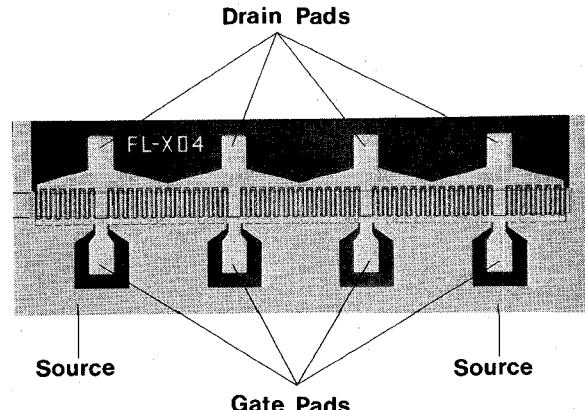



Fig. 5. This photomicrograph shows a power MESFET with 104 gate branches, each 1.5  $\mu\text{m}$  long and 50  $\mu\text{m}$  wide, connected in parallel. The chip delivers 0.9-W output power with 6-dB power gain and 30-percent power-added efficiency at 6 GHz [E9]. (Courtesy of M. Fukuta, Fujitsu Laboratories.)

with the largest  $M_F$  delivers 140-mW output power with 4.8-dB power gain and 9-percent power-added efficiency at 22 GHz [E17].

A new device with better heat-sink properties has been proposed by Blocker *et al.* [E5] for power MESFET's.<sup>6</sup> The metallization layout and the cross section of this MESFET are

<sup>4</sup> Measured at 1-dB gain compression.

<sup>5</sup> The location of the gates between the source and drain edges is defined by a fabrication method which does not require a critical realignment step.

<sup>6</sup> A similar structure has been realized by Vergnolle *et al.* [G6] in the form of a GaAs p-n junction FET (see below).

TABLE II  
PERFORMANCE OF EXPERIMENTAL MICROWAVE POWER TRANSISTORS  
CW DATA OF SINGLE-CHIP GaAs-MESFET's,<sup>1</sup> GaAs-JFET's,<sup>2</sup> AND Si BIPOLAR TRANSISTORS<sup>3</sup>

| Frequency<br>(GHz) | Transistor<br>Type | Output<br>Power<br>(W) | Power<br>Gain <sup>4</sup><br>(dB) | Small-<br>Signal<br>Gain <sup>5</sup><br>(dB) | Power<br>Added<br>Efficiency <sup>6</sup><br>(%) | Figure<br>of<br>Merit <sup>7</sup><br>(GHz <sup>2</sup> /mm) | Gate<br>Length <sup>8</sup><br>(μm) | Total<br>Gate<br>Width <sup>9</sup><br>(mm) | Number<br>of Cells<br>on Chip | Operating<br>Conditions<br>(Class A,B,C) | Company<br>[Reference] |
|--------------------|--------------------|------------------------|------------------------------------|-----------------------------------------------|--------------------------------------------------|--------------------------------------------------------------|-------------------------------------|---------------------------------------------|-------------------------------|------------------------------------------|------------------------|
| 2.0                | Bipolar            | 30                     | 7.0                                | —                                             | 32                                               | 2.2                                                          | 1.5                                 | 43                                          | 10                            | C                                        | MSC [A7]               |
| 4.0                | Bipolar            | 8.0                    | 7.0                                | —                                             | 25                                               | 4.3                                                          | 1.0                                 | 24                                          | 8                             | C                                        | TRW [A6]               |
|                    | MESFET             | 4.0                    | 6.0                                | 7.0                                           | 44                                               | 9.2                                                          | 1.5                                 | 5.2                                         | 2                             | A                                        | Fujitsu [E11]          |
| 6.0                | Bipolar            | 1.5                    | 4.4                                | —                                             | 23                                               | 11                                                           | 1.5                                 | 3.1                                         | 4                             | C                                        | Hewlett-Packard [A5]   |
|                    | JFET               | 1.0                    | 6.0                                | 7.0                                           | 26                                               | 4.4                                                          | 1.5                                 | 6.1                                         | 2                             | A                                        | Thomson-CSF [G6]       |
| 8.0                | MESFET             | 2.7                    | 5.0                                | 6.0                                           | 31                                               | 13                                                           | 1.5                                 | 5.2                                         | 2                             | A                                        | Fujitsu [E11]          |
|                    | Bipolar            | 0.5                    | 6.0                                | —                                             | 22                                               | 22                                                           | 0.5                                 | 1.1                                         | 2                             | B                                        | Texas Instruments [A3] |
|                    | MESFET             | 0.6                    | 6.0                                | 7.5                                           | 34                                               | 21                                                           | 1.5                                 | 1.4                                         | 3                             | A                                        | Plessey [E19]          |
| 15.0               | MESFET             | 0.45                   | 5.2                                | 6.7                                           | 13                                               | 59                                                           | 1.5                                 | 1.2                                         | 2                             | A                                        | RCA [E17]              |
|                    | MESFET             | 0.14                   | 4.8                                | 5.6                                           | 9                                                | 76                                                           | 1.5                                 | 0.6                                         | 1                             | A                                        | RCA [E17]              |

<sup>1</sup>Operated with common source.

<sup>2</sup>Operated with common gate.

<sup>3</sup>Operated with common base.

<sup>4</sup>Associated with the stated output power.

<sup>5</sup>Only applicable for Class A operation.

<sup>6</sup>Defined as RF output power minus RF input power divided by the dissipated dc power.

<sup>7</sup>Defined as added RF power  $\times$  (frequency)<sup>2</sup> divided by the total gate width or emitter periphery.

<sup>8</sup>Or emitter finger width.

<sup>9</sup>Or total emitter periphery.

shown in Fig. 6. Interdigitated source and drain fingers are located on the top side of the chip, and the gate with plated heat sink is located on the bottom side. The channel is confined to an area within the constricted cross section in the n-layer. This structure has the following advantages: 1) it places the active region in intimate thermal contact with the heat sink; 2) it enables an interdigitated structure without overcrossing, since the ohmic contacts and the gate are located on different sides of the chip; 3) it reduces the parasitic source-to-gate resistance; and 4) it makes a self-aligned process possible. Disadvantages are the higher gate-to-drain and gate-to-source capacitances.

Besides Si and GaAs, InP has been investigated for application in MESFET's. InP has a 50-percent higher maximum drift velocity than GaAs<sup>7</sup> [F2], [F3]. Therefore, one expects a higher current-gain bandwidth  $f_T$  for InP-MESFET's. Barrera and Archer [F4] have measured an  $f_T$  that is 1.6 times larger than in analogous GaAs devices. However, the maximum frequency of oscillation,  $f_{max}$ , is 20 percent lower. Degenerate feedback resulting from a large gate-to-drain capacitance and a small output resistance degrades the gain performance. Noise figures of InP-MESFET's are slightly higher.

The ideal semiconductor for FET's has simultaneously a large mobility, large maximum drift velocity, and large avalanche breakdown field. Consequently, a small electron effective mass, a large intervalley separation, and a large energy gap are required. The first and last requirements are conflicting, since a large energy gap implies a large effective mass; but it is possible to design a better compromise than is found in the binary compounds GaAs and InP.

<sup>7</sup> The low field mobility of InP is 25 percent lower, however.

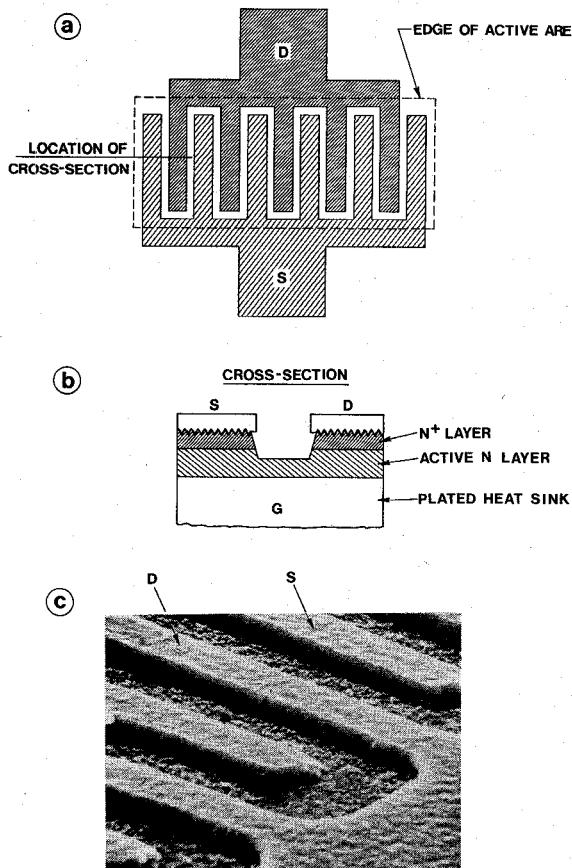



Fig. 6. Power MESFET structure with plated heat sink on the gate as proposed in [E5]. (a) Shows the metallization on the top side of the chip with interdigitated source and drain fingers. Outside the active area, the GaAs is converted into semi-insulating material by proton bombardment. (b) Shows the cross section of the device with the source and drain on top and the gate with plated heat sink on the bottom of the chip. (c) Shows the top view of the FET chip [G6]. (SEM courtesy of C. Vergnolle, Thomson-CSF.)

Two systems which merit consideration are the mixed crystals InAs-InP and InAs-GaAs [F5], [F6]. Decker *et al.* [F7] have grown thin films of  $In_{0.04}Ga_{0.96}As$  directly on GaAs. MESFET's fabricated on this material are very similar to their GaAs counterpart with the exception of a larger output resistance. The step in the bandgap at the InGaAs-GaAs interface constrains the electrons to the InGaAs layer and prevents penetration of hot electrons into the substrate at the high-field channel region.

### B. JFET

A great deal of effort has been spent on developing p-n junction FET's for microwave applications. In the past, JFET's have not moved to higher frequencies as rapidly as MESFET's primarily because of the difficulty in realizing closely defined p-conducting regions by diffusion or implantation.<sup>8</sup> In more recent developments, such as the power JFET with ion-milled channel [G6] or the heterojunction JFET [G7], these limitations do not apply and rapid advances can be expected.

In 1972 Teszner [G1] described an Si-JFET with a vertical channel for power amplification. This multielement transistor has buried p<sup>+</sup>-gate fingers, and the ohmic contacts for source and drain are located on opposite sides of the chip (Fig. 1). The structure was later realized by high-energy ion implantation of the gate [G2]. In this vertical geometry, no implantation-induced defects are generated in the channel. Consequently, low annealing temperatures were used and patterns with 1- $\mu m$ -long channels were realized. Test devices, with 1.8-mm total gate width, delivered 200-mW output power with 6-dB power gain at 2.7 GHz.

In GaAs, Zuleeg *et al.* [G3] have realized a low-noise JFET with a diffused p-n junction of 2- $\mu m$  length. The transistor exhibits 2.5-dB noise figure and 10-dB associated gain at 4 GHz. This JFET has a high tolerance to fast neutron radiation. A 1-MeV neutron fluence of  $5 \times 10^{16}$  neutrons/cm<sup>2</sup> is required to degrade the transconductance by 10 percent [G4], [G5].

A power GaAs-JFET has been built by Vergnolle *et al.* [G6] [Fig. 6(c)]. The construction is similar to the one shown in Fig. 6(b), except that the Schottky barrier is replaced by a p-n junction grown on a p<sup>+</sup>-substrate. This structure has the same advantages as the MESFET of Fig. 6(a) and (b), except that the thermal resistance is limited by the spreading resistance in the GaAs substrate. This JFET with 1.5- $\mu m$  gate length and 6-mm total gate width delivers 1-W output power<sup>9</sup> with 6-dB power gain and 26-percent power-added efficiency at 6 GHz.

A low-noise FET with a heterojunction gate is now under development at Matsushita Electric [G7]. The junction consists of a p-type  $Ge_{0.5}Al_{0.5}As$  layer grown on top

of an n-type GaAs layer. The p-layer can be selectively etched to the shape of a 1- $\mu m$  gate strip. This feature combined with a self-aligned process enables simple fabrication of GaAs-JFET's.

### C. IGFET

Field-effect transistors with insulated gates are of interest for power amplification. They offer the following advantages over MESFET's or JFET's. 1) In the active region of an enhancement-mode MOSFET, the input capacitance and the transconductance are almost independent of gate voltage, and the output capacitance is independent of the drain voltage.<sup>10</sup> This leads to very linear (Class A) power amplification with low amplitude and phase distortion. 2) The active gate-voltage range can be larger because n-channel depletion-type IGFET's can be operated from the depletion-mode region ( $-V_{GS}$ ) to the enhancement-mode region ( $+V_{GS}$ ). Unfortunately, practical IGFET's have only been made on Si. Attempts to realize a usable device in GaAs have had only limited success [H1], [H2]. It is difficult to fabricate an insulating film which produces an interface to n-GaAs with a low density of electron states [H2]-[H4]. Recent advances with anodic native oxides of GaAs show promising interface and dielectric properties [H5]. A density of fast interface states of  $1$  to  $2 \times 10^{11} \text{ cm}^{-2} \text{ eV}^{-1}$  has been observed. This is still 10 times higher than the best results in Si [H6], but sufficiently low for MOSFET operation.

Morita *et al.* [H7] have developed an n-channel depletion-type Si-MOSFET which delivers 16-W output power<sup>11</sup> with 6-dB associated power gain and 26-percent power-added efficiency at 700 MHz. The device has a conventional planar structure with diffused n<sup>+</sup> drain and source regions and a 5- $\mu m$ -long and 20-mm-wide channel. A very different approach is the vertical-gate MOS transistor (VMOST) designed for power amplification [H8]. This device consists of mesa strips with control gates on both sides of each strip (Fig. 1). The source contact is made to the top surface of the mesa, and the n<sup>+</sup>-substrate acts as a common drain. The length of the vertical n-channel is controlled by epitaxial growth and the metal-gate length by angular metal deposition. For a 1- $\mu m$ -long and 18-mm-wide channel, a CW output power of 4 W<sup>12</sup> with 5-dB power gain has been measured at 2 GHz by Heng [H9]. Also, a double-diffused MOSFET (D-MOST) can be fabricated with channel lengths of less than 1  $\mu m$  using standard photolithography [H10]. The short channel results from subsequent diffusions of the channel and source impurities under the same oxide layer. This technique gives accurate control of the channel length comparable to the control over the base width in diffused bipolar transistors. The D-MOST has been developed for low-noise UHF amplification by Sigg *et al.*

<sup>8</sup> Lateral diffusion or lateral spreading of the ions during implantation and during the subsequent high-temperature annealing step widen the p-regions with respect to mask dimensions.

<sup>9</sup> Measured at 1-dB gain compression. For a performance comparison with MESFET's, see Table II.

<sup>10</sup> This applies to MOSFET's with n<sup>-</sup> drift region.

<sup>11</sup> Measured at 4-dB gain compression.

<sup>12</sup> Measured at 1-dB gain compression.

[H11], [H12]. Single-gate FET's exhibit 3.0-dB noise figure and 9.0-dB associated gain at 1 GHz [H13]. Dual-gate FET's suitable for mixers and for amplifiers with automatic gain control have 4.5-dB noise figure with 14-dB gain [H13]. Silicon-on-sapphire MOS transistors (SOS-MOST) have also been developed for UHF applications with the advantage of very low drain-to-channel and drain-to-source capacitances. A small-signal dual-gate SOS-MOST has been built by Ronen and Strauss [H14] with a 4- $\mu\text{m}$  channel length yielding 25-dB gain at 0.5 GHz.

#### D. Conclusion

The MESFET's have been the most successful among the microwave FET's in low noise and in power amplification above 2 GHz. The reasons for this are easy realization on GaAs and the fact that the two critical dimensions, the gate length and channel thickness, can be accurately controlled. With advanced fabrication processes, such as  $E$ -beam lithography [C3], [C17], ion implantation [C13], [C16], [C27], [W4], [X4], and molecular-beam epitaxy [C28], further improvement in dimensional control is obtained. In comparison with silicon bipolar transistors, MESFET's have higher maximum frequency of oscillation, lower noise figures, and larger associated gain at microwave frequencies (Fig. 3). They also have higher reverse isolation and lower third-order intermodulation distortion. Above 4 GHz, GaAs MESFET's have better efficiency as power amplifiers than bipolar transistors (Table II). In addition, FET's do not exhibit secondary breakdown, are self-ballasting,<sup>13</sup> and have inherently higher input impedance. Also, the gate-to-source and drain-to-source impedances are fairly insensitive to temperature variations [S6]. As majority-carrier devices, FET's are more immune to the effects of neutron and gamma radiation than bipolar transistors [G4], [G5], [Q13]. Currently, much effort is spent in determining the reliability, failure modes, and stability of GaAs MESFET's [I1]–[I9]. Preliminary results indicate a meantime to failure in excess of  $10^7$  h at 70°C channel temperature as reported by Irie *et al.* [I3] and Abbott and Turner [I5]. Ch'en *et al.* [I7], [I8] observed an improvement in the long-term stability of MESFET parameters after passivating the GaAs surface with a thin coating of polycrystalline GaAs.

### III. MESFET PRINCIPLE OF OPERATION

In this section, the physical principles in the operation of a silicon MESFET are explained. Then the differences between silicon and GaAs-MESFET's are outlined and effects occurring in FET's with very short gate length are discussed. Next, the equivalent circuit is presented and high-frequency limitations are described. Finally, the principles of the noise behavior are presented.

<sup>13</sup> With rising temperature, the channel and source resistances increase, preventing "thermal runaway."

#### A. Principles of Silicon MESFET Operation

The current-voltage characteristic of a thin n-type silicon layer in which electrons are carrying the current is plotted in Fig. 7(a). This layer is supported by an insulating silicon substrate. At the surface of the conducting layer, two ohmic contacts are made, called the source and drain. A cross section of this device is shown in Fig. 7(a).<sup>14</sup> If a positive voltage  $V_{DS}$  is applied to the drain, electrons will flow from source to drain. Hence the source acts as the origin of carriers and the drain as a sink. For small voltages, the silicon layer behaves like a linear resistor. For larger voltages, the electron drift velocity does not increase at the same rate as the electric field  $E$  (Fig. 8). As a result, the current-voltage characteristic falls below the initial resistor line. As  $V_{DS}$  is further increased,  $E$  reaches a critical field,  $E_c$ ,<sup>15</sup> for which the electrons reach a maximum velocity,  $v_s$  (Fig. 8). At this drain voltage, the current starts to saturate.

In Fig. 7(b) a metal-to-semiconductor contact, called the gate, has been added between source and drain. This contact creates a layer in the semiconductor that is completely depleted of free-carrier electrons. This depletion layer acts like an insulating region and constricts the cross section available for current flow in the n-layer. The width of the depletion region depends on the voltage applied between the semiconductor and the gate. In Fig. 7(b) the gate is shorted to the source and a small drain voltage is applied. Under these conditions, the depletion layer has a finite width and the conductive channel beneath has a smaller cross section  $d$  than in Fig. 7(a). Consequently, the resistance between source and drain is larger, as shown in Fig. 7(b). The current  $I_{DS}$  flowing from drain to source is given by

$$I_{DS} = wqn(x)v(x)d(x) \quad (1)$$

where  $w$  is the gate width (see Fig. 11),  $q$  the charge of an electron,  $n$  the density of conduction electrons,  $v$  their drift velocity,  $d$  the conductive layer thickness, and  $x$  the coordinate in the direction of the electron drift. The electron density  $n$  is equal to the constant donor density  $N_D$  as long as the field does not exceed the critical value  $E_c$ . The voltage along the channel increases from zero at the source to  $V_{DS}$  at the drain. Thus the metal-to-semiconductor junction becomes increasingly reverse biased, and the depletion layer becomes wider as we proceed from source to drain. The resulting decrease in conductive cross section  $d$  must be compensated by an increase of electric field and electron velocity  $v$  to maintain a constant current through the channel. As the drain voltage is increased further, the electrons reach the maximum limiting velocity  $v_s$  under the drain end of the gate. This is illustrated in Fig. 7(c). The channel is constricted to the smallest cross section  $d_0$  under the gate

<sup>14</sup> For simplicity, the bending of the bands at the free surface of the n-layer and the depleted region at the substrate interface are neglected. Also the electric field is assumed to be uniform in the n-region between the contacts.

<sup>15</sup> In silicon, the value of  $E_c$  cannot be accurately defined.

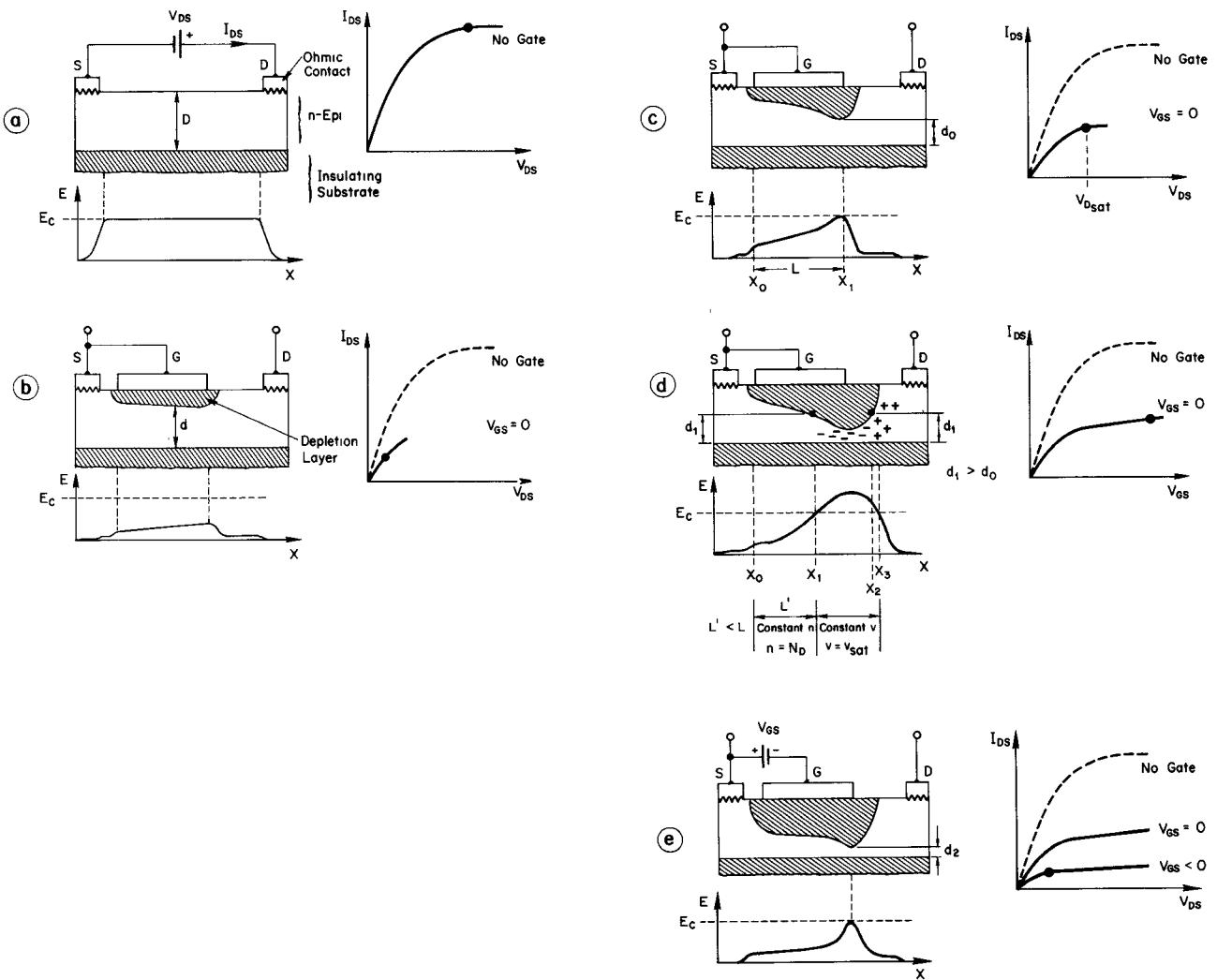



Fig. 7. (a) Shows the  $I$ - $V$  characteristic of an n-type silicon layer with two ohmic contacts. The current saturates because the electrons reach a maximum drift velocity at the critical field  $E_c$ . In (b)-(d), the current is controlled by the depletion layer under a Schottky gate, shorted to the source. In (c) the current starts to saturate at  $V_{D_{sat}}$ , and (d) shows the formation of a stationary dipole layer in the channel for  $V_{DS} > V_{D_{sat}}$  [J12], [K1]. (e) Illustrates the condition for a negative gate bias. The depletion layer is wider, it constricts the conductive cross section further, and causes the current to saturate at a lower level.

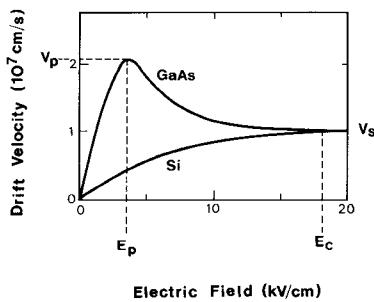



Fig. 8. Equilibrium electron drift velocity versus electric field in GaAs and silicon (after Ruch [K11]).

edge, the electric field reaches the critical value at this point, and the current starts to saturate.

If the drain voltage is increased beyond  $V_{D_{sat}}$ , the depletion region widens toward the drain. The point  $x_1$ , where the electrons reach the limiting velocity, moves slightly toward the source [Fig. 7(d)]. As  $x_1$  moves closer to the source,

the voltage at  $x_1$  decreases.<sup>16</sup> Consequently, the conductive cross section  $d_1$  widens and more current is injected into the velocity-limited region. This results in a positive slope of the  $I_{DS}$  curve and a finite drain-to-source resistance beyond current saturation [J8], [J12]. The effect is particularly pronounced in microwave MESFET's with short gate lengths.

Proceeding from  $x_1$  toward the drain, the channel potential increases, the depletion layer widens, and the channel cross section  $d$  becomes narrower than  $d_1$ . Since the electron velocity is saturated, the change in channel width must be compensated for by a change in carrier concentration to maintain constant current. According to (1), an electron accumulation layer forms between  $x_1$  and  $x_2$ , where  $d$  is smaller than  $d_1$ . At  $x_2$  the channel cross section is again  $d_1$  and the negative space charge changes to a positive space charge to preserve constant current. The

<sup>16</sup> The average field between  $x_0$  and  $x_1$  remains nearly unchanged while the distance between  $x_0$  and  $x_1$  decreases.

positive space charge is caused by partial electron depletion. The electron velocity remains saturated between  $x_2$  and  $x_3$  due to the field added by the negative space charge. In short, the drain voltage applied in excess of  $V_{D_{sat}}$  forms a dipole layer in a channel that extends beyond the drain end of the gate [J12], [K1].

When a negative voltage is applied to the gate [Fig. 7(e)], the gate-to-channel junction is reverse biased, and the depletion region grows wider. For small values of  $V_{DS}$ , the channel will act as a linear resistor, but its resistance will be larger due to a narrower cross section available for current flow. As  $V_{DS}$  is increased, the critical field is reached at a lower drain current than in the  $V_{GS} = 0$  case, due to the larger channel resistance. For a further increase in  $V_{DS}$ , the current remains saturated. In essence, the MESFET consists of a semiconducting channel whose thickness can be varied by widening the depletion region under the metal-to-semiconductor junction. The depletion region widening is the effect of a field or voltage applied between gate and channel of the transistor.

Various analytical solutions for the voltage-current characteristics of short-gate MESFET's with field-dependent electron velocity have been developed. The majority [J2]–[J7] follow a one-dimensional analysis based on the gradual-channel approximation proposed by Shockley [J1]. They compute the drain current at the onset of current saturation [Fig. 7(c)]. Two-dimensional approximations of the field distribution for large drain voltages have also been derived [J8]–[J12]. These analytical solutions make allowance for space charges in the channel and enable calculations of the small-signal drain-to-source resistance in the saturated current region. Much effort has also been concentrated on accurate two-dimensional numerical solutions for Si [K1]–[K7], for GaAs and InP [K8]–[K14].

#### B. Principles of Gallium Arsenide MESFET Operation

In GaAs, the analysis in the high-field region is considerably more complicated than in Si because 1) the equilibrium electron velocity versus electric field reaches a peak value at about 3 kV/cm, then decreases and levels off at a saturated velocity that is about equal to the limiting velocity in silicon (Fig. 8) [F1], [K11]; 2) for gate lengths shorter than 3  $\mu\text{m}$ , a nonequilibrium velocity-field characteristic has to be considered [K13].

A rigorous treatment of the electron transport in GaAs MESFET's, based on the equilibrium velocity-field characteristic, has been carried out by Himsworth [K9]. Fig. 9 summarizes the key features of a transistor with 3- $\mu\text{m}$  gate length operated far in the saturated current region. The narrowest channel cross section is located under the drain end of the gate. The drift velocity rises to a peak at  $x_1$ , close to the center of the channel, and falls to the low saturated value under the gate edge. To preserve current continuity according to (1), heavy electron accumulation has to form in this region because the channel cross section is narrowing and, in addition, the electrons are moving progressively slower with increasing  $x$ . Exactly the opposite occurs between  $x_2$  and  $x_3$ . The channel widens and the

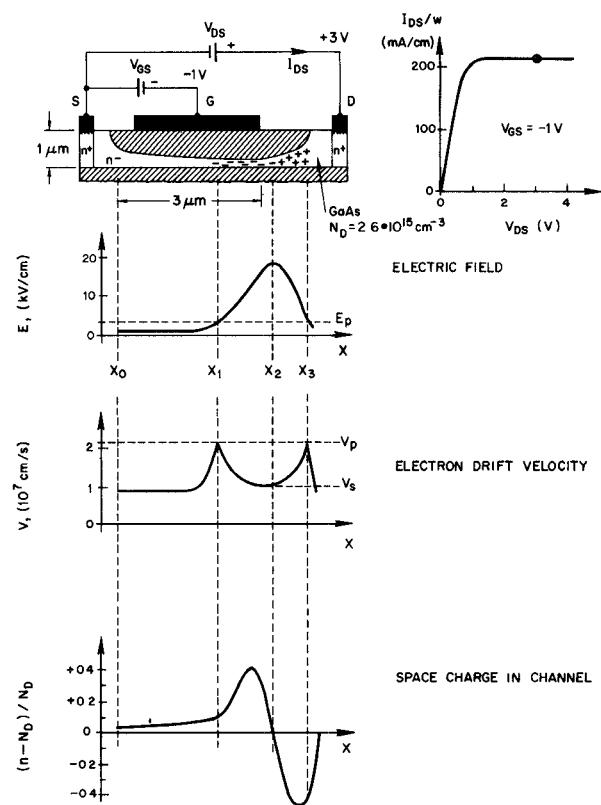



Fig. 9. The channel cross section, electric field, electron drift velocity, and space-charge distribution in the channel are illustrated for a GaAs-MESFET operated in the current-saturated region (data from Himsworth [K9]). Proceeding from  $x_1$  to  $x_2$ , the channel cross section becomes narrower and, in addition, the electrons "slow down." To preserve current continuity, a heavy electron accumulation has to form. The opposite occurs between  $x_2$  and  $x_3$ .

electrons move faster causing a strong depletion layer.<sup>17</sup> The charges in the accumulation and depletion layers are nearly equal and most of the drain voltage drops in this stationary dipole-layer.

In microwave FET's with very short gate length, the electrons do not reach equilibrium transport conditions in the high-field region of the channel. Nonequilibrium velocity-field characteristics in GaAs have been studied by computer simulations using Monte Carlo methods [K11]–[K14]. In a simplified approach, slow electrons are injected into a constant-field region and their drift velocity is monitored [K11]–[K13]. The situation is schematically illustrated in Fig. 10. As long as  $E$  is below the threshold field  $E_p$ , the electrons remain in equilibrium conditions. If the electrons enter a high-field region ( $E > E_p$ ), they are accelerated to a higher velocity before relaxing to the equilibrium velocity.<sup>18</sup> This overshoot to more than twice the

<sup>17</sup> This region is not fully depleted of free electrons in contrast to the cross-hatched depletion layers.

<sup>18</sup> For  $E < E_p$ , electrons remain in the "lower valley" where they have a high mobility. For  $E \gg E_p$ , almost all electrons are transferred to a "satellite valley," a state in which they have a low mobility; i.e., low velocity at a given field. If the field changes suddenly from a value below to above  $E_p$ , a time period of approximately 1 ps passes before the carriers are transferred from the lower to the upper valley. During this time, the electrons remain in the high-mobility state in which they can acquire a high velocity in the high field.

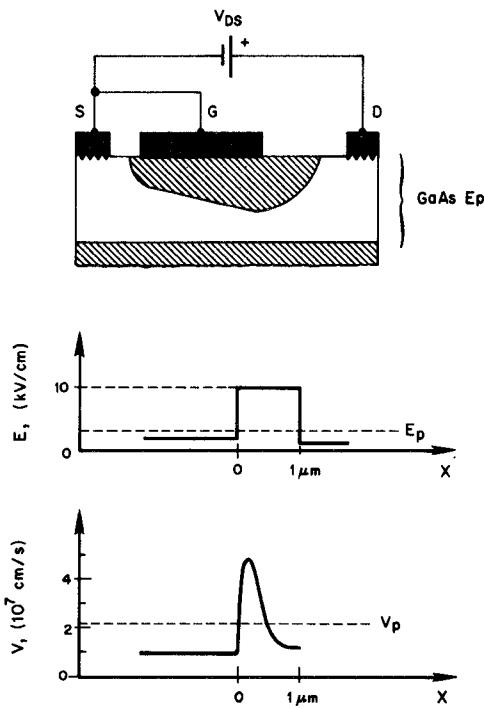



Fig. 10. This figure shows schematically the velocity overshoot of electrons as they enter the high-field region ( $E > E_p$ ) under the gate (data from Ruch [K11]). Under equilibrium conditions, the maximum drift velocity is  $v_p$  (Fig. 8).

peak equilibrium velocity  $v_p$ , and the relaxation to the equilibrium condition, after traveling over a 0.6- $\mu\text{m}$  path length [K11], is shown in Fig. 10. The effect is only noticeable in MESFET's with less than 3- $\mu\text{m}$  gate length [K12], [K13]. The overshoot shortens the electron transit time through the high-field region and shifts the accumulation layer into the gap between gate and drain [K14].

### C. Small-Signal Equivalent Circuit

An RF equivalent circuit of the MESFET should model the channel as a distributed  $RC$  network. However, a simple lumped-element circuit is capable of describing the FET's  $s$ -parameters accurately up to 12 GHz [C1], [C5], [L1]–[L4]. The equivalent circuit for operation in the saturated current region in common-source configuration is shown in Fig. 11(a). The location of the elements in the FET structure is illustrated in Fig. 11(b). In the intrinsic FET model, the elements ( $C_{dg} + C_{gs}$ ) represent the total gate-to-channel capacitance;  $C_{dc}$  models the capacitance of the dipole layer;  $R_i$  and  $R_{ds}$  show the effects of the channel resistance; and  $i_{ds}$  defines the voltage-controlled current source. The transadmittance  $y_m$  relates  $i_{ds}$  to the voltage across  $C_{gs}$ . Up to 12 GHz,  $y_m$  is characterized by a frequency-independent magnitude, the transconductance  $g_m$ , and by a phase delay  $\tau_0$ , reflecting the carrier transit time in the channel section where  $E > E_p$ . The extrinsic (parasitic) elements are:  $R_s$  the source resistance,  $R_d$  the drain resistance,  $R_g$  the gate-metal resistance, and  $C_{ds}$  the substrate capacitance. Typical element values for a GaAs-MESFET with 1- $\mu\text{m}$  gate length and 500- $\mu\text{m}$  gate width are listed in Table III.

The analysis of the equivalent circuit yields a critical frequency  $f_k$ , above which the MESFET is unconditionally

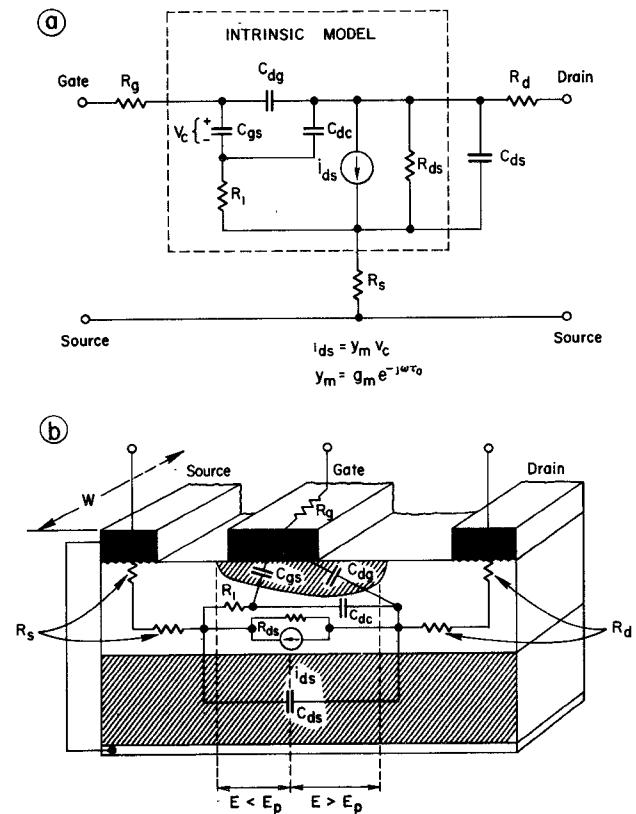



Fig. 11. (a) Is the equivalent circuit of a MESFET. Typical element values are listed in Table III. (b) Shows the physical origin of the circuit elements.

TABLE III  
EQUIVALENT-CIRCUIT PARAMETERS OF A LOW-NOISE GaAs-MESFET  
WITH A 1- $\mu\text{m}$   $\times$  500- $\mu\text{m}$  GATE  
(HP EXPERIMENTAL,  $N_D = 1 \times 10^{17} \text{ cm}^{-3}$ )

| Intrinsic Elements          | Extrinsic Elements         |
|-----------------------------|----------------------------|
| $g_m = 53 \text{ mho}$      | $C_{ds} = 0.12 \text{ pF}$ |
| $\tau_0 = 5.0 \text{ ps}$   | $R_g = 2.9 \Omega$         |
| $C_{gs} = 0.62 \text{ pF}$  | $R_d = 3 \Omega$           |
| $C_{dg} = 0.014 \text{ pF}$ | $R_s = 2.0 \Omega$         |
| $C_{dc} = 0.02 \text{ pF}$  | $L_g = 0.05 \text{ nH}^*$  |
| $R_i = 2.6 \Omega$          | $L_d = 0.05 \text{ nH}^*$  |
| $R_{ds} = 400 \Omega$       | $L_s = 0.04 \text{ nH}^*$  |
| <u>dc Bias</u>              |                            |
| $V_{DS} = 5 \text{ V}$      |                            |
| $V_{GS} = 0$                |                            |
| $I_{DS} = 70 \text{ mA}$    |                            |

\* Contacting inductances of the test fixture in series with  $R_g$ ,  $R_d$  and  $R_s$ , respectively.

stable.  $f_k$  can be approximated by<sup>19</sup>

$$f_k \approx \frac{1}{2\pi(\tau_0 + \tau_1 + \tau_2)} \quad (2)$$

<sup>19</sup> Equations (2)–(4) were derived as outlined in [B4].

where  $\tau_0$  is defined in Fig. 11 and

$$\tau_1 = \frac{C_{dg}(2R_g + R_i + R_s)}{\frac{C_{dg}}{C_{gs}} + \frac{R_s}{R_{ds}}} \quad (3)$$

$$\tau_2 = \frac{2}{\frac{g_m}{C_{gs}} \left[ \frac{C_{dg}}{C_{gs}} + \frac{R_s}{R_{ds}} \right]} \frac{R_g + R_i + R_s}{R_{ds}} \quad (4)$$

$f_k$  is 6.1 GHz for the MESFET with the parameters listed in Table III. The MESFET with a complex-conjugate-matched input port becomes unstable with decreasing frequency because a larger fraction of the output voltage is fed back to the input over the  $C_{dg} - R_{in}$ <sup>20</sup> voltage divider. With decreasing frequency,  $R_{in}$  rises as  $1/\omega^2$  while the reactance of  $C_{dg}$  increases only as  $1/\omega$ .

Mason's unilateral gain [Q1] is approximately

$$G_u \approx \left( \frac{f_u}{f} \right)^2 \quad (5)$$

where  $f_u$  is the maximum frequency of oscillation [B4], [C1]

$$f_u \approx \frac{f_T}{2\sqrt{r_1 + f_T\tau_3}} \quad (6)$$

$f_T$  the frequency at unity current gain

$$f_T \approx \frac{1}{2\pi} \frac{g_m}{C_{gs}} \quad (7)$$

$r_1$  the input-to-output resistance ratio

$$r_1 = \frac{R_g + R_i + R_s}{R_{ds}} \quad (8)$$

and  $\tau_3$  the time constant

$$\tau_3 = 2\pi R_g C_{dg} \quad (9)$$

Equation (5) shows a gain decreasing with 6 dB/octave as the frequency increases. At  $f_u$ , unity gain is reached.<sup>21</sup> To maximize  $f_u$ , the frequency  $f_T$  and the resistance ratio  $R_{ds}/R_i$  must be optimized in the intrinsic MESFET. In addition, the extrinsic resistances  $R_g$  and  $R_s$  and the feedback capacitance  $C_{dg}$  have to be minimized.

#### D. High-Frequency Limitations

The high-frequency limitations of MESFET's are dependent on device geometry and material parameters. In silicon and GaAs, electrons have a higher mobility than holes. Therefore, only n-channel FET's are used in microwave applications (see Table I). Electrons have six times higher low-field mobility<sup>22</sup> and two times higher maximum drift velocity in GaAs as opposed to silicon. The saturated

<sup>20</sup>  $R_{in}$  is the effective resistance between gate and source after the conjugate-impedance-matched generator has been connected; i.e.,

$$R_{in} \approx \frac{1}{2\omega^2 C_{gs}^2 (R_g + R_i + R_s)}.$$

<sup>21</sup>  $f_u$  is 46 GHz for the MESFET of Table III.

<sup>22</sup> The comparison is made for a doping density of  $1 \times 10^{17} \text{ cm}^{-3}$  [F1], [F8].

velocities are about equal in both materials. As a consequence, the realized current-gain bandwidths  $f_T$  are about two times higher and the maximum frequencies of oscillation  $f_u$  three times higher in GaAs- as opposed to Si-MESFET's [C4], [C9], [C10]. In the device geometry, the most critical parameter is the gate length  $L$ . Decreasing the gate length decreases the capacitance  $C_{gs}$  and increases the transconductance  $g_m$ ; consequently, there is an improved current-gain bandwidth  $f_T$ . For the short-gate-length microwave MESFET's,  $f_T$  is proportional to  $1/L$  [J5]. High-speed operation is achieved by shrinking the gate length to the minimum size that can be realized with a given technology. Conventional photolithographic contact or projection-masking limits the smallest features to approximately a 1- $\mu\text{m}$  size. An order of magnitude smaller gate length can be realized with X-ray or electron-beam lithography [X3]. A computer study of submicron Si-MESFET's by Reiser and Wolf [K6] reveals that  $f_T$  increases while the output resistance  $R_{ds}$  decreases with shrinking gate length. The limit for useful gate reduction is reached when the gate length is about equal to the channel thickness  $D$ . To keep  $L/D > 1$ , the channel thickness has to be decreased together with the gate length. This implies a higher doping level. In practical devices, the highest doping level is about  $4 \times 10^{17} \text{ cm}^{-3}$  because of breakdown phenomena. The conclusion is that the gate length for Si-MESFET's should be larger than 0.1  $\mu\text{m}$ . This geometry limits the current-gain bandwidth to about 70 GHz [K6]. In GaAs, quantitative high-frequency limitations need to be established. In very short gate devices ( $L < 0.2 \mu\text{m}$ ), the field is above the threshold value  $E_p$  over the entire gate length [K9] and electrons are expected to remain in their high-mobility state for the entire flight through the channel [K12], [K13].

#### E. Principles of Noise Behavior

The noise properties of any linear two-port can be represented by a noiseless two-port with noise-current generators connected across the input and output ports [M1]. This is a physically meaningful way of describing the noise behavior of the intrinsic MESFET (Fig. 12).

The noise-current generator at the output represents the short-circuit channel noise generated in the drain-source path. The mean square of  $i_{nd}$  can be expressed by [M2]

$$\overline{i_{nd}^2} = 4kT_0\Delta f g_m P \quad (10)$$

with  $k$  the Boltzmann constant,  $T_0$  the lattice temperature,  $\Delta f$  the bandwidth,  $g_m$  the transconductance, and  $P$  a factor depending on the device geometry and the dc bias. For zero drain voltage,  $i_{nd}$  characterizes the thermal noise generated by the drain conductance  $G_{ds}$ ; i.e.,  $P = G_{ds}/g_m$ . For positive drain voltages, the noise generated in the channel is larger than the thermal noise generated by  $G_{ds}$  for the following reasons. First, a thermal noise voltage generated locally in the channel modulates the conductive cross section of the channel and results in an amplified noise voltage at the drain [M2]. Second, the electrons are accelerated in the electric field, then scattered in all directions due to interactions with lattice phonons. Their random drift-velocities and the attributed free-carrier temperature

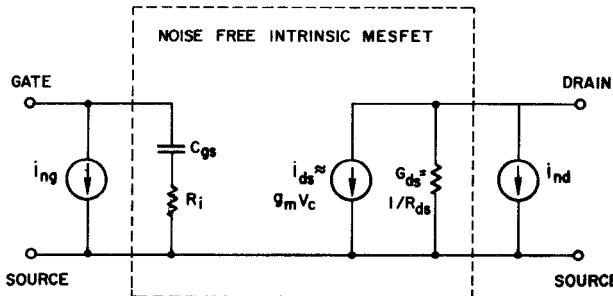



Fig. 12. Equivalent circuit of the (simplified) intrinsic MESFET with noise-current sources at the input and output port.

increase with the applied field to values considerably higher than the lattice temperature (hot-electron noise [M6], [M7]). Third, in GaAs carriers undergo field-dependent transitions from the central valley in the conduction band to satellite valleys and vice versa. A transferred electron experiences an abrupt velocity change. These transitions cause statistical drift-velocity fluctuations and thus generate field-dependent "intervalley-scattering noise" [M8]. Fourth, for large drain voltages, the electrons reach their limiting velocity on the drain side of the channel. In this region, the field has no influence on the carrier drift velocity. Therefore, this channel section cannot be treated as an ohmic conductor. Here, the noise is formulated as high-field diffusion noise<sup>23</sup> [M5], [M9], [M10], and the mean square of the noise current is proportional to the high-field diffusion coefficient in the semiconductor.

A noise voltage, generated locally in the channel, causes a fluctuation in the depletion-layer width. The resulting charge fluctuation in the depletion layer in turn induces a compensating charge variation on the gate electrode. The total induced-gate charge fluctuation is described in Fig. 12 by a noise-current generator  $i_{ng}$  at the gate terminal [M3] where

$$\overline{i_{ng}^2} = 4kT_0\Delta f \frac{\omega^2 C_{gs}^2}{g_m} R. \quad (11)$$

$C_{gs}$  is the gate-source capacitance and  $R$  a factor depending on the FET geometry and the bias conditions.<sup>24</sup> The two noise currents,  $i_{nd}$  and  $i_{ng}$ , are caused by the same noise voltages in the channel. Therefore, partial correlation has to be expected.<sup>25</sup> A correlation factor  $C$  is defined as [M3]

$$jC = \frac{i_{ng}^* \cdot i_{nd}}{\sqrt{i_{ng}^2 \cdot i_{nd}^2}} \quad (12)$$

where  $j$  is the imaginary unit and the asterisk defines the complex conjugate. The correlation coefficient is purely

<sup>23</sup> The diffusion-noise theory is also valid at low fields and is a more general formulation than Johnson's formula for the thermal noise of a conductance [M5].

<sup>24</sup> For zero drain voltage,  $i_{ng}$  is the thermal noise of the input conductance  $g_{11}(g_{11} \approx \omega^2 C_{gs}^2 R_i)$ , and  $R$  is equal to the product  $g_m R_i$ .

<sup>25</sup> Complete correlation results for a channel with uniform conductive cross section (e.g., for zero drain voltage).

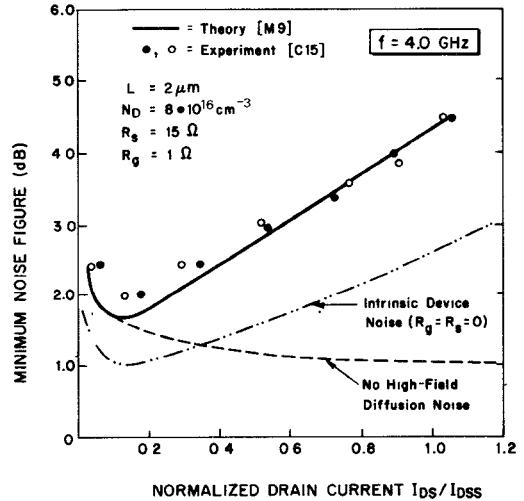



Fig. 13. Theoretical and measured minimum noise figures as a function of normalized drain current for a GaAs-FET with a 2- $\mu$ m gate. (Courtesy of R. Pucel [C22].)

imaginary because  $i_{ng}$  is caused by capacitive coupling of the gate circuit to the noise sources in the drain circuit. The factors  $P$ ,  $R$ , and  $C$  in (10)–(12) have been computed versus normalized gate voltage by Baechtold [M8] for GaAs-MESFET's with various channel length-to-height ratios operated at the onset of current saturation. Statz *et al.* [M9] have extended the computation of  $P$ ,  $R$ , and  $C$  to large drain voltages taking diffusion noise in the velocity-saturated channel region into account.

Using the model of Fig. 12, the minimum noise figure of the intrinsic MESFET can be expressed by [M7], [M10]

$$F_{\min} = 1 + 2\sqrt{PR(1 - C^2)} \frac{f}{f_T} + 2g_m R_i P \left(1 - C \sqrt{\frac{P}{R}}\right) \left(\frac{f}{f_T}\right)^2. \quad (13)$$

Low-noise MESFET's are normally operated at frequencies below  $f_T$  in order to yield sufficient gain. In this case, the linear frequency term in (13) is dominant. Short-gate MESFET's can exhibit very low noise figures for the following reasons. For an optimized drain current ( $I_{DS}/I_{DSS} \approx 0.15$ ), the diffusion-noise contribution is small (Fig. 13),  $f_T$  is close to its maximum value [W3], and the correlation coefficient approaches unity ( $C \approx 0.9$  [M9]). Substantial noise cancellation occurs at the drain which is expressed by the factor  $(1 - C^2)$  in (13). The amplified input-noise current ( $\alpha i_{ng}$ ) destructively interferes with the correlated  $i_{nd}$  if the MESFET's gain and transmission phase are properly adjusted with an optimized input termination

$$|\alpha i_{ng} + i_{nd}|^2 \ll |\alpha i_{ng}|^2 + |i_{nd}|^2. \quad (14)$$

In a practical MESFET, the parasitic resistances  $R_g$  and  $R_s$ , shown in Fig. 11, decrease the effectiveness of this noise cancellation [C22], [M9] and, in addition, they generate thermal noise themselves. A comparison between theoretical and experimental noise figures versus drain current is shown in Fig. 13. The increase of  $F_{\min}$  with drain current is caused by the diffusion noise in the velocity-saturated

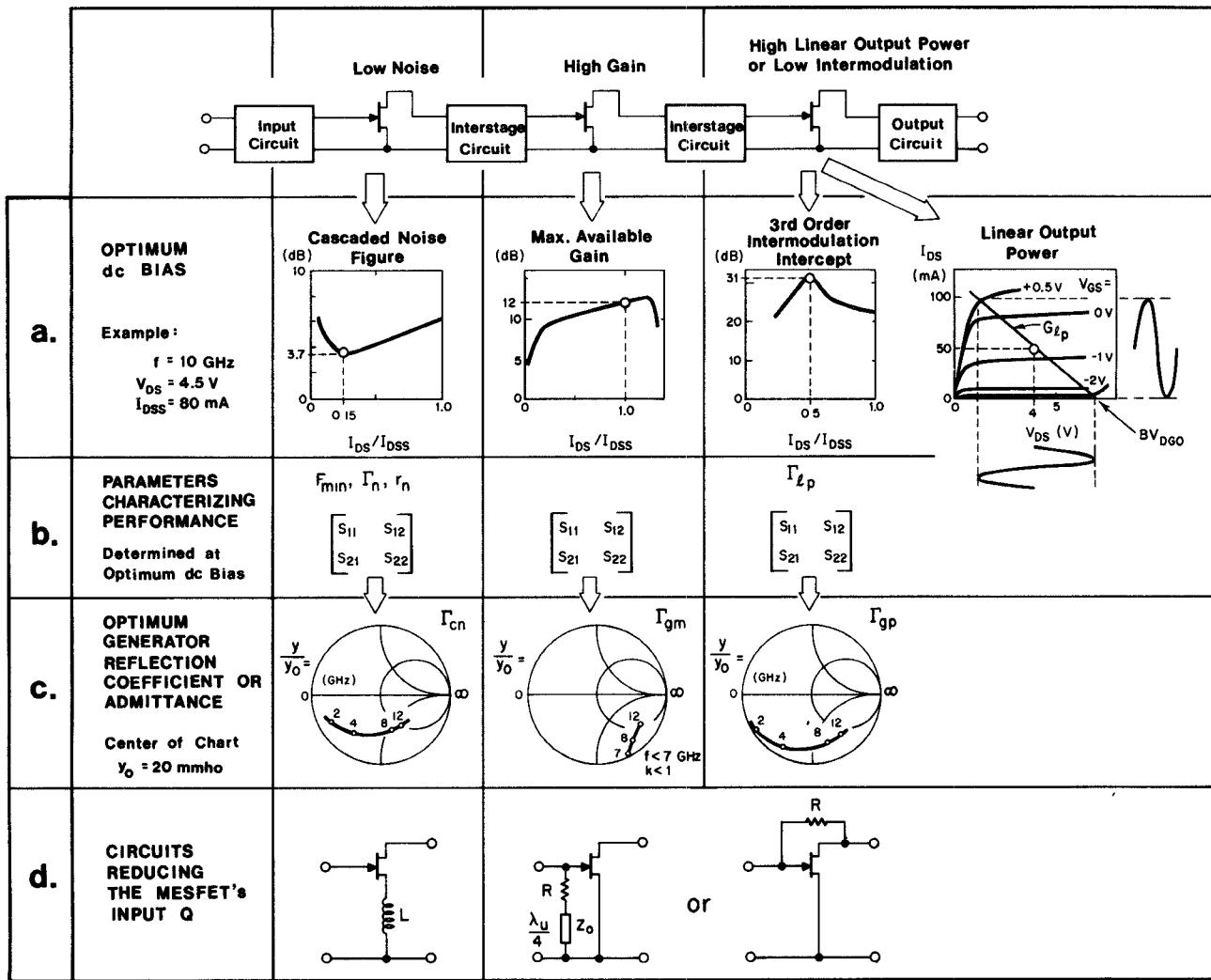



Fig. 14. The figure shows the key parameters in operating a MESFET in either a low-noise front stage, a high-gain stage, or a linear-power stage. (a) Illustrates the FET characteristics leading to the optimum dc bias. (b) Lists the parameters characterizing the performance (e.g., as computer input for CAD). (c) Shows optimum generator reflection coefficient to be synthesized by the circuits. The example is based on an HP MESFET with 1- $\mu\text{m}$  gate length and 500- $\mu\text{m}$  gate width. (d) Shows circuits to reduce the MESFET's input  $Q$  or to stabilize the transistor at low frequencies.

region [M9]. The noise-figure rise for small drain currents is caused by the rapid decrease of  $g_m$  and consequently of  $f_T$ . Also shown is the computed noise figure of the intrinsic MESFET.

#### IV. MESFET AMPLIFIERS

In this section, basic concepts in the design of low-noise and linear medium-power MESFET amplifiers are reviewed.<sup>26</sup> The optimum dc bias, the parameters for device characterization, and the optimum generator admittance are discussed. Principles for network synthesis are described. Finally, performance characteristics of low-noise MESFET amplifiers are presented. As an example, an amplifier with a low-noise front stage, a high-gain stage, and a power-output stage is considered (Fig. 14). The amplifier shall

be designed for low noise figure, flat gain, and high linear output-power capability across a specified band.

##### A. Optimized Operating Conditions for the MESFET's

The MESFET in the first-amplifier stage has to be operated at the dc bias yielding the lowest cascaded noise figure<sup>27</sup>

$$F_c = \frac{FG - 1}{G - 1} \quad (15)$$

where  $F_c$  is the noise figure of an infinite number of cascaded stages each having a noise figure  $F$  and gain  $G$ .  $F_c$  is nearly independent of the drain voltage as long as  $V_{DS} > V_{D_{sat}}$ ; however, strongly dependent on the drain current [C15], [M7], [M9]. Typically,  $F_c$  reaches a minimum at  $0.1\text{--}0.2I_{DSS}$  [C15], [D4], [M9] where  $I_{DSS}$  is the

<sup>26</sup> The reader is also referred to recent review papers on solid-state microwave amplifiers by Cuccia [O1], Magarshack [O2], and Osbrink *et al.* [O3].

<sup>27</sup> The term "noise measure,"  $M$ , proposed by Haus and Adler [N1], is omitted here. Instead, the "cascaded noise figure,"  $F_c$  is adopted. The relationship between  $F_c$  and  $M$  is  $F_c = 1 + M$ .

saturated drain current at zero gate voltage [Figs. 13 and 14(a)]. The drain current is adjusted to this optimum value with the gate bias. In this operating point, the MESFET's noise behavior is characterized by 1) the minimum noise figure  $F_{\min}$ ; 2) the reflection coefficient of the generator  $\Gamma_g$ , which produces  $F_{\min}$ ; and 3) a dimensionless coefficient  $r_n$  [N2]–[N9]. For an arbitrary generator reflection coefficient  $\Gamma_g$ , the noise figure is then determined by

$$F = F_{\min} + 4r_n \frac{|\Gamma_g - \Gamma_n|^2}{(1 - |\Gamma_g|^2)(1 + |\Gamma_n|^2)}. \quad (16)$$

If the  $s$ -parameters are known, all parameters of interest can be computed. These are, e.g., the optimum generator reflection coefficient for lowest cascaded noise figure  $\Gamma_{cn}$  [N3], [N9], the optimum load reflection coefficient, the associated transistor gain (17), etc.  $\Gamma_{cn}$  is in general different from the reflection coefficient for maximum gain  $\Gamma_{gm}$  [Fig. 14(c)]. A combination of lossless parallel and series feedback is capable of making  $\Gamma_{cn}$  and  $\Gamma_{gm}$  identical without changing  $F_c$ <sup>28</sup> [N10]–[N14].

The MESFET in the second stage is operated with maximum small-signal gain [Fig. 14(a)]. This condition is obtained at approximately zero gate voltage ( $I_{DS} \approx I_{DSS}$ ), where  $f_T$  reaches a maximum, and at a drain voltage that maximizes the output resistance and the resistance ratio  $1/r_1$  in (8). The small-signal behavior is fully characterized with the four  $s$ -parameters [Q3]. The transducer gain<sup>29</sup> for any generator and load reflection coefficients,  $\Gamma_g$  and  $\Gamma_l$ , respectively, is [Q4]

$$G = \frac{|s_{21}|^2(1 - |\Gamma_g|^2)(1 - |\Gamma_l|^2)}{|(1 - s_{11}\Gamma_g)(1 - s_{22}\Gamma_l) - s_{12}s_{21}\Gamma_g\Gamma_l|^2}. \quad (17)$$

The  $s$ -parameters determine also Rollett's [Q2] stability factor  $k$

$$k = \frac{1 + |s_{11}s_{22} - s_{12}s_{21}|^2 - |s_{11}|^2 - |s_{22}|^2}{2|s_{12}s_{21}|}. \quad (18)$$

If  $k$  is larger than unity,<sup>30</sup> an optimum combination of  $\Gamma_{gm}$  and  $\Gamma_{lm}$  simultaneously image-matches the two MESFET ports and maximizes the gain [Q4]. If  $k$  is smaller than unity, the MESFET is only conditionally stable. In this case, the terminations  $\Gamma_g$  and  $\Gamma_l$  must be carefully chosen to operate the transistor in a stable range [Q4], [Q5] or the resistive stabilization networks described below must be applied. Frequently,  $k \gg 1$  and  $|s_{12}|$  are small enough for the MESFET to be treated as a unilateral two-port ( $s_{12} = 0$ ;  $k = \infty$ ). In this case, the optimum generator and load terminations are

$$\Gamma_{gm} = s_{11}^* \quad \Gamma_{lm} = s_{22}^* \quad (19)$$

<sup>28</sup> The MESFET's noise figure  $F$  and gain  $G$  change, but the cascaded noise figure  $F_c$  remains invariant.

<sup>29</sup> The transducer gain is defined as the power delivered to the load divided by the available power from the generator.

<sup>30</sup> i.e., the MESFET is operated above the critical frequency  $f_k$  discussed in Section III.

and the maximum available gain obtained from (17) is

$$G_{\max} = \frac{|s_{21}|^2}{(1 - |s_{11}|^2)(1 - |s_{22}|^2)}. \quad (20)$$

The asterisk in (19) defines the complex conjugate of the  $s$ -parameters.

The MESFET in the output stage is intended to operate as a linear (Class A) amplifier. The design objectives can be either lowest intermodulation distortion [P1]–[P3], largest added RF power [Q6], or largest linear output power [T1]. In the last case, the dc bias is graphically determined from the static drain-current versus drain-voltage characteristic. The bias and load conductance line are chosen to maximize the product of linear voltage and current swing [Fig. 14(a)]. The limitations are determined by the maximum dc power dissipation, the drain-to-gate breakdown voltage  $BV_{DGO}$ , and the positive gate bias ( $V_{GS} \approx 0.5$  V) above which appreciable gate current flows. The optimum load conductance is typically much larger than the MESFET's output conductance. Consequently, the MESFET is not matched to the load and does not deliver maximum gain. However, the large load conductance shunting the MESFET's nonlinear output admittance reduces intermodulation distortion.<sup>31</sup> The optimum load conductance and susceptance determine the optimum reflection coefficient of the load  $\Gamma_{lp}$ . The generator reflection coefficient that provides a complex-conjugate match at the input is then

$$\Gamma_{gp} = \left[ s_{11} + \frac{s_{12}s_{21}\Gamma_{lp}}{1 - s_{22}\Gamma_{lp}} \right]^* \quad (21)$$

and the associated gain is determined from (17).

Optimum generator reflection coefficients for low noise, high gain, and high linear-power operation are shown in Fig. 14(c). The plotted data are typical for an unpackaged small-signal GaAs-MESFET with 1- $\mu\text{m}$  gate length and 500- $\mu\text{m}$  gate width. At low frequencies, the FET has a high- $Q$  input admittance and wide-band matching is difficult. Simple circuits that lower the  $Q$  value are illustrated in Fig. 14(d). A series-feedback inductance between source and ground increases the input series resistance, decreases the input reactance, and leaves  $F_c$  unchanged. A resistor in-series with a short-circuited shunt stub, connected between gate and source, lowers the  $Q$  and stabilizes the FET at the low-frequency end of the band [T1]. If the shunt stub is a quarter-wavelength long at the upper band edge, the circuit does not load the FET input and does not decrease the gain at this frequency. Also, a parallel feedback resistance has been proposed for stabilization and input  $Q$  lowering [Q7].

### B. Amplifier Network Synthesis

The input-matching network transforms the 50- $\Omega$  generator impedance to the optimum impedance with

<sup>31</sup> If low third-order intermodulation is desired [Fig. 14(a)], a drain current is chosen that minimizes the distortion from the nonlinear transconductance and input capacitance [P3].

reflection coefficient  $\Gamma_{cn}$ . The transformed impedance versus frequency must have a negative-reactance slope,  $dX/df < 0$ . For narrow-band amplifiers, the circuit is derived from a simple graphical design using the Smith chart [L4], [N3], [Q9]–[Q12]. For moderate-bandwidth MESFET amplifiers, impedance-matching bandpass networks with quarter-wave resonators have been applied successfully [Q13]. These networks are derived from low-pass filter prototypes; the circuit topology is well defined, and the element values are optimized by simple computations. The design procedures treat the MESFET as a unilateral device ( $s_{12} = 0$ ). For more accurate optimizations and for large bandwidths, computer-aided design procedures are used in which the MESFET is characterized by all noise- and  $s$ -parameters [Q14]–[Q19]. In general, a particular circuit topology is chosen by the designer. The values of the circuit elements are then optimized by the computer. The optimization routine searches in a systematic way for the global minimum of an error function  $E$  defined as

$$E = \sum_{f_1}^{f_n} [\text{calculated } H(f) - \text{required } H(f)]^2 \quad (22)$$

where  $f$  is the frequency and  $H$  is a performance function defined as a weighted sum of gain, noise figure, reflection coefficients, etc. The matching networks are normally built as microstrip circuits. A monolithic amplifier stage, combining lumped matching elements with the MESFET on a single GaAs chip, has also been reported [B1], [R13]. The amplifier modules exhibit very broad-band performance (6–12.4 GHz).

In the interstage networks, the insertion loss versus frequency response has to compensate the MESFET's gain slope [Fig. 15(a)] to achieve a flat amplifier gain. Generally, this is done by matching the output of the preceding FET to the input of the following transistor at the upper band edge and providing an increasing mismatch with decreasing frequency [Fig. 15(b)]. Analytical methods have been developed for the synthesis of reactive networks yielding the desired insertion loss versus frequency characteristic [Q20]–[Q24]. Since the gain slope is provided by reactive mismatch, high standing waves result between the stages at the lower band end. The high voltages generated in the standing waves enhance feedback in the FET's and the large reactance versus frequency slopes of the networks cause high group-delay variations. These problems can be avoided with dissipative coupling networks [Q13], [Q25], [Q26] which provide a lossless impedance match at the highest frequency in the band and introduce increasing resistive loss (attenuation) with decreasing frequency [Fig. 15(c)]. The amount of gain compensation has to be individually chosen for each interstage network to achieve lowest amplifier noise figure across the entire band [Q25] and to prevent premature power saturation in the driver stage [Q26].

MESFET amplifiers are built with balanced and unbalanced circuits. Balanced amplifiers consist of a pair of amplifiers or single-tuned stages whose inputs are connected to the

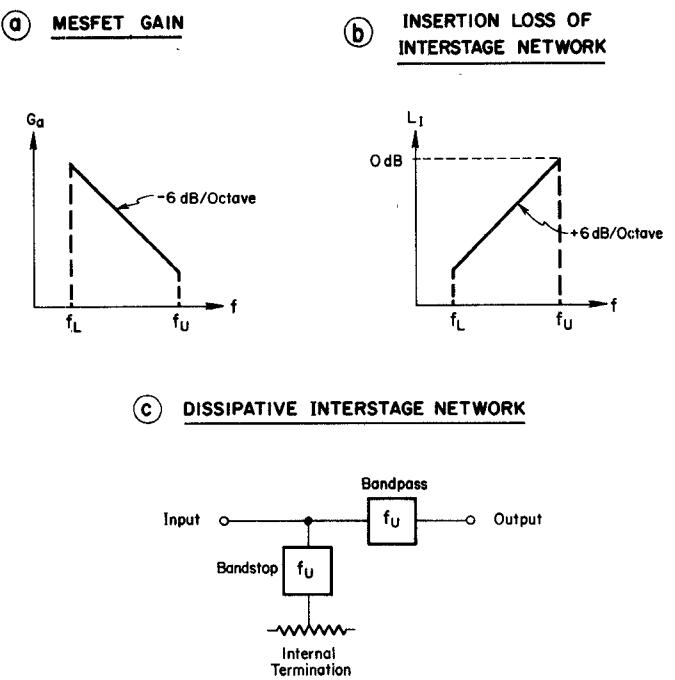



Fig. 15. For a flat amplifier gain, the MESFET's gain versus frequency slope (a) has to be compensated by an inverse slope in the interstage network's insertion loss (b). The insertion-loss characteristic can be obtained with reactive mismatch in an  $L$ - $C$  network or with frequency-dependent attenuation in a diplexer resulting in dissipation of the excess power in an internal termination (c).

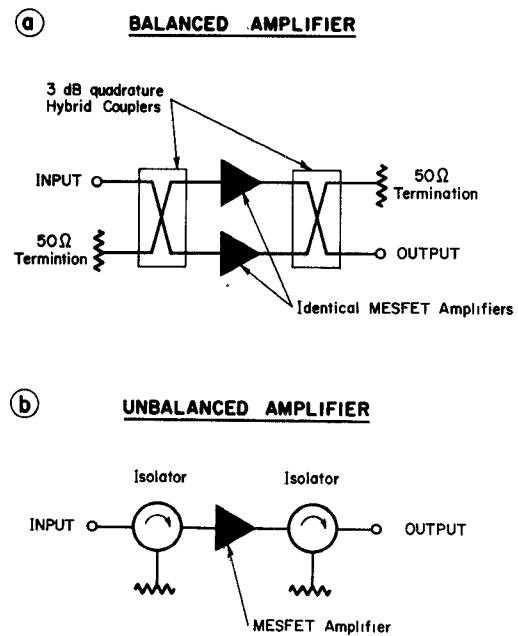



Fig. 16. MESFET amplifiers are built in balanced form with 3-dB hybrid couplers at the input and output of each stage or as an unbalanced chain of stages with isolators on both amplifier ports.

conjugate ports of a 3-dB hybrid coupler and whose outputs are similarly connected to another 3-dB coupler [Fig. 16(a)] [Q27]. The signal applied at the input port of the first coupler splits into two equal parts and is fed to the two amplifiers. The amplified signals from the two amplifier outputs recombine in the second coupler and emerge at one of the coupler's output ports. The advantages of the balanced

amplifier over an unbalanced amplifier are improvement in: 1) input and output impedance matching in an amplifier optimized for noise figure or output power, 2) short- and open-circuit stability, 3) phase linearity, 4) gain compression, 5) intermodulation characteristics, and 6) reduced sensitivity to transistor impedance variations, provided the MESFET's are selected in similar pairs. Unbalanced amplifiers, on the other hand, need only half as many MESFET's, matching networks, and dc power. In general, isolators are required at the input and output of broad-band unbalanced MESFET amplifiers to meet low VSWR specifications and to make the noise figure independent of the source admittance [Fig. 16(b)]. 3-dB hybrid couplers are also used for power combining [Q28] as shown in Fig. 17.

### C. MESFET Amplifier Performance

Various small-signal FET amplifiers have been described in the literature [C14], [D6], [G3], [P3], [Q7], [Q13], [Q22], [R1]–[R15]. Most are low-noise designs. Noise figures of laboratory prototypes are plotted versus frequency in Fig. 18. The solid lines represent narrow-band amplifiers. Lowest noise figures are 2.2 dB at 4 GHz, 3.6 dB at 8 GHz, and 5.0 dB at 12 GHz. The single data points (circles, squares, etc.) show noise figures of the 1- $\mu$ m MESFET's used in the first amplifier stages. The data points lie about 1.0 dB below the amplifier noise figures. The noise-figure difference is caused by the insertion loss of the input circuit and by the noise contribution of the following stages. The noise figures of wide-band amplifiers, plotted with dashed lines, are typically 1.0–1.5 dB higher than the narrow-band circuits. At room temperature, thermal-noise sources dominate the noise performance of GaAs MESFET's in microwave amplifiers [M8], [M9]. By cooling the amplifier, a significant noise reduction can be obtained [S1]–[S6]. 1.6-dB noise figure (i.e., 130 K input noise temperature) was measured at 60 K for a 12-GHz amplifier [S5], [S6].

Octave-band MESFET amplifiers covering the 4.0–8.0-GHz frequency range have been built in balanced form [C14], [R5], [R6], [T3]. Typically, a three-stage small-signal amplifier has 24-dB gain,  $\pm 0.7$ -dB gain variation, 1.8:1 maximum VSWR at the input and output port, +13-dBm output power for 1-dB gain compression, and +20-dBm third-order intermodulation intercept [R16], [R17]. In the 8.0–12.0-GHz band, a three-stage unbalanced amplifier without isolators exhibits  $20 \pm 1.3$ -dB gain, 2.5:1 maximum VSWR, +13-dBm output power, and +26-dBm intermodulation intercept [Q13]. Less gain variation, e.g.,  $28.5 \pm 0.5$  dB, can be obtained with a balanced design [R15].

A few medium-power amplifiers have been reported [T1]–[T6]. At 6 GHz, a four-stage amplifier with 26-dB gain and 1-W output power,<sup>32</sup> using a single MESFET chip in the output stage, has been built [T2]. More common are balanced output stages which combine the output power of two transistors [T1], [T3], [T6]. Also, wide-band medium-power amplifiers have been designed [T1], [T3],

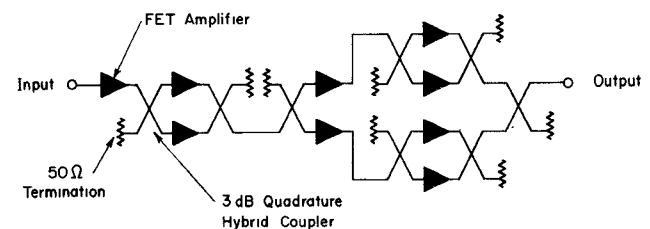



Fig. 17. In transistor power amplifiers, 3-dB hybrid couplers are also used as power combiners (after S. Lazar [Q28]).

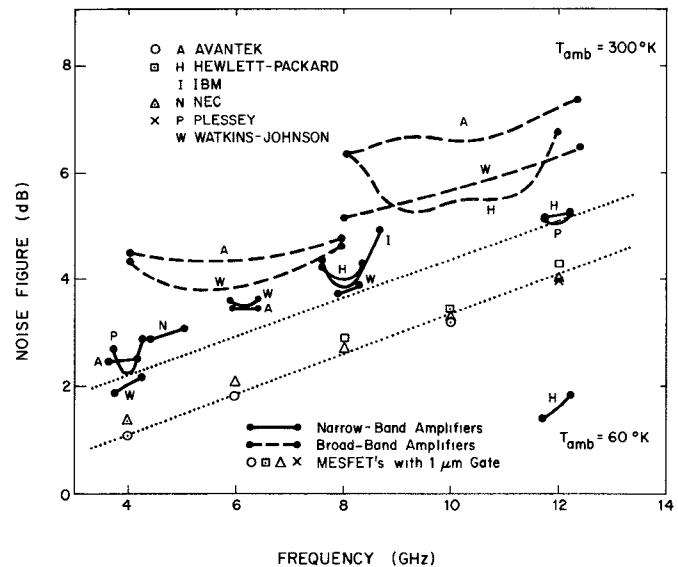



Fig. 18. This noise figure versus frequency graph summarizes performance of experimental MESFET amplifiers. The solid lines represent narrow-band amplifiers, and the single data points show noise figures of the 1- $\mu$ m MESFET's used in the first stages. The broken lines illustrate the noise performance of wide-band amplifiers.

and one covers the 2–6-GHz band [T1]. In this frequency range, MESFET's with 1- $\mu$ m gate length have a high- $Q$  input impedance, and matching circuits with resistive components, illustrated in Fig. 14(d), must be used.

### V. OTHER APPLICATIONS

So far, comparatively little effort has been spent on the development of GaAs-MESFET oscillators [U1]–[U8]. This application should prove to be of interest since MESFET's combine the advantages of low bias voltage (< 10 V), relatively low noise measure (< 23 dB),<sup>33</sup> and high efficiency (> 15 percent at 10 GHz [U2]). Also GaAs-MESFET mixers [V1]–[V5] are expected to receive more attention in the near future. Good noise performance ( $F = 7.4$  dB)<sup>34</sup> and large dynamic range (third-order intermodulation intercept = +18 dBm)<sup>34</sup> can be achieved with conversion gain ( $G = 6$  dB)<sup>34</sup> [V3]. Another application is the use

<sup>33</sup> This oscillator noise measure is measured at 1-MHz separation from the X-band carrier [U3]. This noise measure is high in comparison to amplifier noise figures because of upconverted 1/f noise. Reduction of traps at the active-layer surface and at the substrate interface is expected to improve the low-frequency noise performance of GaAs-MESFET's in the near future.

<sup>34</sup> Measured at 8 GHz with a balanced MESFET mixer.

<sup>32</sup> Measured at 1-dB gain compression.

of Si-MESFET's [W1], [W2] and GaAs-MESFET's [W3]–[W7] or GaAs-JFET's [W8], [W9] in high-speed digital circuits. Monolithic integrated-logic gates with 100-ps signal-propagation delay (fanout 2) and 4-pJ speed-power product have been built using 1- $\mu\text{m}$  GaAs-MESFET's [W3], [W4]. This is less than half the propagation delay measured on highest speed bipolar logic [W10], [W11]. In addition, the feasibility for medium-scale integration of these GaAs circuits has been demonstrated [W4].

## VI. CONCLUSIONS AND OUTLOOK

GaAs-FET's are capable of low-noise amplification, high-efficiency power amplification and generation, high-speed modulation, and logic. Since these are areas of major microwave-system needs, substantial efforts in device and application developments are anticipated. In the near future, rapid advances are expected in the areas of 1) FET reliability, 2) device fabrication with high yield, uniform and reproducible unit-to-unit parameters by means of ion implantation, and electron-beam lithography, and 3) higher power capability and efficiency due to improved device structures with better heat sinking, thermally stable ohmic contacts, and more burn-out-resistant gates. Looking further ahead, a strong trend toward monolithic integration for digital, analog, and hybrid applications is now apparent. The monolithic approach is attractive because MESFET's fabricated on the same active layer can be used as switches, logic gates with active loads, impedance transformers, amplifiers, oscillators, and mixers; and the devices can be supported, isolated, and interconnected with low parasitic capacitances on the semi-insulating substrate. Monolithic integration is required to handle the complexity of tasks and to serve high-volume low-cost markets. Integrated high-speed logic will be needed in digital communications with gigabit-per-second data rates [W12]–[W14], in multi-phase-shift-keyed modulation and demodulation, time multiplexing, frequency division, counting, frequency synthesis, and waveform synthesis. A need is foreseen for microwave analog and hybrid circuits, on a single chip, such as 1) combinations of a preamplifier, mixer, local oscillator, and IF amplifier, 2) wide-band signal and operational amplifiers, 3) sample and hold circuits, and 4) high-speed D/A and A/D converters. Advances in III-V materials preparation and in submicron device processing will make microwave monolithic circuits with FET's a reality.

## ACKNOWLEDGMENT

The author wishes to thank Dr. D. Ch'en, G. Gilbert, Dr. T. Heng, Dr. C. Snapp, Dr. J. Turner, and M. Walker for supplying new, unpublished data, and Dr. R. Archer, Dr. G. Bechtel, Dr. R. Engelmann, Dr. U. Gysel, Dr. R. Lee, Dr. J. Magarshack, Dr. C. Stolte, B. Lizenby, A. Podell, and R. Van Tuyl for many helpful discussions and for their assistance in reviewing the manuscript. The author is also grateful to Mrs. S. Ybarra for drafting the figures and to Ms. E. Miller for typing the manuscript at times of heavy work load.

## REFERENCES

### A. Bipolar Transistors

- [A1] R. Engelbrecht and K. Kurokawa, "A wide-band low-noise L-band balanced transistor amplifier," *Proc. IEEE*, vol. 53, pp. 237–247, March 1965.
- [A2] J. Archer, "Low-noise implanted-base microwave transistors," *Solid-State Electron.*, vol. 17, pp. 387–393, April 1974.
- [A3] H. Yuan, J. Kruger, and Y. Wu, "X-band silicon power transistor," in *1975 Int. Microwave Symp., Dig. Tech. Papers*, pp. 73–75.
- [A4] C. Snapp, Hewlett-Packard Associates, private communication (HP-515).
- [A5] J. Chen and K. Verma, "A 6 GHz silicon bipolar power transistor," in *1974 Int. Electron Devices Meeting, Dig. Tech. Papers*, pp. 299–301.
- [A6] J. Steenbergen, A. Harrington, and G. Schreyer, "Broadband power transistor 4.4–5.0 GHz," U.S. Army Electronics Command, Final Technical Report, Contract No. DAAB07-73-C-0283, Fort Monmouth, February 1976.
- [A7] G. Gilbert, Microwave Semiconductor Corporation, private communication.
- [A8] C. Nuese, J. Gannon, R. Dean, H. Gossenberger, and R. Enstrom, "GaAs vapor-grown bipolar transistors," *Solid-State Electron.*, vol. 15, pp. 81–91, Jan. 1972.
- [A9] W. Dumke, J. Woodall, and V. Rideout, "GaAs-GaAlAs heterojunction transistor for high frequency operation," *Solid-State Electron.*, vol. 15, pp. 1339–1343, Dec. 1972.
- [A10] M. Konagai and K. Takahashi, "(GaAl)As-GaAs heterojunction transistors with high injection efficiency," *J. Appl. Phys.*, vol. 46, pp. 2120–2124, May 1975.

### B. Review Papers on Microwave FET's

- [B1] J. Turner, "Microwave FET's and their applications," in *Proc. 1975 Cornell Conference on Active Semiconductor Devices for Microwave and Integrated Optics*, pp. 13–22.
- [B2] C. Liechti, "Recent advances in high-frequency field-effect transistors," in *1975 Int. Electron Devices Meeting, Dig. Tech. Papers*, pp. 6–10.
- [B3] R. Pringle, "Microwave transistor and monolithic integrated circuit technology," *Microelectron. J.*, vol. 6, pp. 33–41, June 1975.
- [B4] S. Ohkawa, K. Suyama, and H. Ishikawa, "Low noise GaAs field-effect transistors," *Fujitsu Sci. Tech. J.*, vol. 11, pp. 151–173, March 1975.

### C. Low-Noise Si and GaAs MESFET's (Single-Gate)

- [C1] P. Wolf, "Microwave properties of Schottky-barrier field-effect transistors," *IBM J. Res. Develop.*, vol. 14, pp. 125–141, March 1970.
- [C2] K. Drangeid, R. Sommerhalder, and W. Walter, "High-speed gallium-arsenide Schottky-barrier field-effect transistors," *Electron. Lett.*, vol. 6, pp. 228–229, April 1970.
- [C3] J. Turner, A. Waller, R. Bennett, and D. Parker, "An electron beam fabricated GaAs microwave field-effect transistor," *1970 Symp. GaAs and Related Compounds* (Inst. Phys., Conf. Series No. 9, London, 1971), pp. 234–239.
- [C4] W. Baechtold, W. Walter, and P. Wolf, "X and Ku band GaAs MESFET," *Electron. Lett.*, vol. 8, pp. 35–37, Jan. 1972.
- [C5] C. Liechti, E. Gowen, and J. Cohen, "GaAs microwave Schottky-gate FET," in *1972 Int. Solid-State Circuits Conf., Dig. Tech. Papers*, pp. 158–159.
- [C6] G. Bechtel, W. Hooper, and D. Mock, "X-band GaAs FET," *Microwave J.*, vol. 15, pp. 15–19, Nov. 1972.
- [C7] F. Doerbeck, "A planar GaAs Schottky-barrier field-effect transistor with a self-aligned gate," *1970 Symp. GaAs and Related Compounds* (Inst. Phys., Conf. Series No. 9, London, 1971), pp. 251–258.
- [C8] M. Driver, H. Kim, and D. Barrett, "Gallium arsenide self-aligned gate field-effect transistors," *Proc. IEEE*, vol. 59, pp. 1244–1245, Aug. 1971.
- [C9] W. Baechtold and P. Wolf, "An improved microwave silicon MESFET," *Solid-State Electron.*, vol. 14, pp. 783–790, Sep. 1971.
- [C10] W. Baechtold *et al.*, "Si and GaAs 0.5  $\mu\text{m}$ -gate Schottky-barrier field-effect transistors," *Electron. Lett.*, vol. 9, pp. 232–234, May 1973.
- [C11] J. Jahncke, "Hoechstfrequenz-eigenschaften eines GaAs-MESFET's in Streifenleitungstechnik," *Nachr. Tech. Z.*, vol. 26, pp. 193–199, May 1973.
- [C12] R. Hunsperger and N. Hirsch, "GaAs field-effect transistors with ion-implanted channels," *Electron. Lett.*, vol. 9, pp. 577–578, Dec. 1973.
- [C13] —, "Ion-implanted microwave field-effect transistors in GaAs," *Solid-State Electron.*, vol. 18, pp. 349–353, April 1975.
- [C14] D. Ch'en and A. Woo, "A practical 4 to 8 GHz GaAs FET amplifier," *Microwave J.*, vol. 17, pp. 26, 72, Feb. 1974.

[C15] G. Brehm and G. Vendelin, "Biasing FET's for optimum performance," *Microwaves*, vol. 13, pp. 38-44, Feb. 1974.

[C16] B. Welch, F. Eisen, and J. Higgins, "Gallium arsenide field-effect transistors by ion implantation," *J. Appl. Phys.*, vol. 45, pp. 3685-3687, Aug. 1974.

[C17] F. Ozdemir *et al.*, "Electron beam fabricated 0.5  $\mu\text{m}$  gate GaAs Schottky-barrier field-effect transistor," *1974 Int. Electron Devices Meeting (late news paper)*, *Suppl. Dig. Tech. Papers*, p. 5.

[C18] E. Kohn, "V-shaped-gate GaAs MESFET for improved high-frequency performance," *Electron. Lett.*, vol. 11, p. 160, April 1975.

[C19] E. Kohn, R. Wueller, R. Stahlmann, and H. Beneking, "High-speed 1  $\mu\text{m}$  GaAs MESFET," *Electron. Lett.*, vol. 11, pp. 171-172, April 1975.

[C20] Data sheets: Fairchild, FMT 940/941, FMT 980/981; Plessey, GAT 3/4; Nippon Electric Company, NE 244/388; Hitachi, HCRL 81-84.

[C21] M. Ogawa, K. Ohata, T. Furutsuka, and N. Kawamura, "Submicron single-gate and dual-gate GaAs MESFET's with improved low noise and high gain performance," *IEEE Trans. Microwave Theory and Techniques*, this issue, pp. 300-305.

[C22] R. Pucel, D. Masse, and C. Krumm, "Noise performance of gallium-arsenide field-effect transistors," in *Proc. 1975 Cornell Conference on Active Semiconductor Devices for Microwaves and Integrated Optics*, pp. 265-276.

[C23] J. Barrera, "The importance of substrate properties on GaAs FET performance," in *Proc. 1975 Cornell Conference on Active Semiconductor Devices for Microwaves and Integrated Optics*, pp. 135-144.

[C24] W. Kellner, H. Kniepkamp, D. Ristow, and H. Boroffka, "Microwave field-effect transistors from sulphur-implanted GaAs," in *1975 Int. Electron Devices Meeting, Dig. Tech. Papers*, pp. 238-242.

[C25] P. Baudet, M. Binet, and D. Boccon-Gibod, "Submicrometer self-aligned GaAs MESFET," *IEEE Trans. Microwave Theory and Techniques*, this issue, pp. 372-376.

[C26] T. Nozaki, M. Ogawa, H. Terao, and H. Watanabe, "Multi-layer epitaxial technology for the Schottky-barrier GaAs field-effect transistor," *1974 Conf. GaAs and Related Compounds* (Inst. Phys., Conf. Ser. No. 24, London, 1975), pp. 46-54.

[C27] J. Higgins, B. Welch, F. Eisen, and G. Robinson, "Performance of ion-implanted GaAs MESFET's," in *1975 Int. Electron Devices Meeting (late news paper)*, *Suppl. Dig. Tech. Papers*, p. 5.

[C28] A. Cho and D. Ch'en, "GaAs MESFET prepared by molecular beam epitaxy (MBE)," *Appl. Phys. Lett.*, vol. 28, pp. 30-31, Jan. 1976.

**D. Dual-Gate GaAs MESFET's**

[D1] J. Turner, A. Waller, E. Kelley, and D. Parker, "Dual-gate GaAs microwave FET," *Electron. Lett.*, vol. 7, pp. 661-662, Nov. 1971.

[D2] S. Asai, F. Murai, and H. Kodera, "The GaAs dual-gate FET with low noise and wide dynamic range," in *1973 IEEE Int. Electron Devices Conf., Dig. Tech. Papers*, pp. 64-67.

[D3] C. Liechti, "Characteristics of dual-gate GaAs MESFETs," in *Proc. 1974 European Microwave Conf.*, pp. 87-91.

[D4] —, "Performance of dual-gate GaAs MESFETs as gain-controlled, low-noise amplifiers and high-speed modulators," *IEEE Trans. Microwave Theory and Techniques*, vol. MTT-23, pp. 461-469, June 1975.

[D5] R. Dean and R. Matarese, "Submicrometer self-aligned dual-gate GaAs FET," *IEEE Trans. Electron Devices*, vol. ED-22, pp. 358-360, June 1975.

[D6] M. Maeda and Y. Minai, "Application of dual-gate GaAs FET to microwave variable-gain amplifiers," in *1974 IEEE Int. Microwave Symp., Dig. Tech. Papers*, pp. 351-353.

[D7] S. Asai, F. Murai, and H. Kodera, "GaAs dual-gate Schottky-barrier FET's for microwave frequencies," *IEEE Trans. Electron Devices*, vol. ED-22, pp. 897-904, Oct. 1975.

**E. Power GaAs MESFET's**

[E1] M. Fukuta, T. Mimura, I. Tujimura, and A. Furumoto, "Mesh source type microwave power FET," in *1973 Int. Solid-State Circuits Conf., Dig. Tech. Papers*, pp. 84-85.

[E2] L. Napoli *et al.*, "High power GaAs FET amplifier—A multi-gate structure," in *1973 Int. Solid-State Circuits Conf., Dig. Tech. Papers*, pp. 82-83.

[E3] M. Driver, M. Geisler, D. Barrett, and H. Kim, "S-band microwave power FET," in *1973 IEEE Int. Electron Devices Meeting, Dig. Tech. Papers*, pp. 393-395.

[E4] H. Yamasaki *et al.*, "S-band power GaAs field-effect transistors," in *Proc. 1975 Cornell Conf. on Active Semiconductor Devices for Microwaves and Integrated Optics*, pp. 287-296.

[E5] T. Blocker, H. Macksey, and R. Adams, "X-band RF power performance of GaAs FET's," in *1974 IEEE Int. Electron Devices Meeting, Dig. Tech. Papers*, pp. 288-291.

[E6] H. Macksey and R. Adams, "Fabrication processes for GaAs power FET's," in *Proc. 1975 Cornell Conf. on Active Semiconductor Devices for Microwaves and Integrated Optics*, pp. 255-264.

[E7] J. Angus, R. Butlin, D. Parker, R. Bennett, and J. Turner, "The design and evaluation of GaAs power MESFET's," in *Proc. 1975 European Microwave Conf.*, pp. 291-295.

[E8] M. Fukuta, H. Ishikawa, K. Suyama, and M. Maeda, "GaAs 8 GHz-band high power FET," in *1974 IEEE Int. Electron Devices Meeting, Dig. Tech. Papers*, pp. 285-287.

[E9] M. Fukuta, K. Suyama, H. Suzuki, and H. Ishikawa, "GaAs microwave power FET," *IEEE Trans. Electron Devices*, vol. ED-23, pp. 388-394, Apr. 1976.

[E10] M. Fukuta, K. Suyama, H. Suzuki, Y. Nakayama, and H. Ishikawa, "X-band GaAs Schottky-barrier power FET with a high drain-source breakdown voltage," in *1976 Int. Solid-State Circuits Conf., Dig. Tech. Papers*, pp. 166-167.

[E11] —, "Power GaAs MESFET with a high drain-source breakdown voltage," *IEEE Trans. Microwave Theory and Techniques*, this issue, pp. 312-317.

[E12] L. Napoli and R. DeBrecht, "Performance and limitations of FETs as microwave power amplifiers," in *1973 IEEE Int. Microwave Symp., Dig. Tech. Papers*, pp. 230-232.

[E13] L. Napoli, J. Hughes, W. Reichert, and S. Jolly, "GaAs FET for high power amplifiers at microwave frequencies," *RCA Rev.*, vol. 34, pp. 608-615, Dec. 1973.

[E14] R. Camisa, I. Druker, H. Huang, J. Goel, and S. Narayan, "GaAs MESFET linear amplifiers," in *1975 IEEE Int. Solid-State Circuits Conf., Dig. Tech. Papers*, pp. 70-71.

[E15] I. Druker, R. Camisa, S. Jolly, H. Huang, and S. Narayan, "Medium power J-band MESFET's," in *Proc. 1975 Cornell Conf. on Active Semiconductor Devices for Microwaves and Integrated Optics*, pp. 297-304.

[E16] —, "Medium power GaAs field-effect transistors," *Electron. Lett.*, vol. 11, pp. 104-105, March 1975.

[E17] H. Huang *et al.*, "GaAs MESFET performance," in *1975 Int. Electron Devices Meeting, Dig. Tech. Papers*, pp. 235-237.

[E18] H. Huang, I. Druker, R. Camisa, S. Narayan, and S. Jolly, "High-efficiency GaAs MESFET amplifiers," *Electron. Lett.*, vol. 11, pp. 508-509, Oct. 1975.

[E19] J. Turner, The Plessey Company, private communication.

**F. Electron Transport Properties in GaAs, InP and InGaAs; InP and InGaAs MESFET's**

[F1] J. Ruch and W. Fawcett, "Temperature dependence of the transport properties of gallium arsenide determined by a Monte Carlo method," *J. Appl. Phys.*, vol. 41, pp. 3843-3849, Aug. 1970.

[F2] H. Lam and G. Acket, "Comparison of the microwave velocity field characteristics of n-type InP and n-type GaAs," *Electron. Lett.*, vol. 7, pp. 722-723, Dec. 1971.

[F3] W. Fawcett and D. Herbert, "High-field transport in gallium arsenide and indium phosphide," *J. Phys. C: Solid State Phys.*, vol. 7, pp. 1641-1654, May 1974.

[F4] J. Barrera and R. Archer, "InP Schottky-gate field-effect transistors," *IEEE Trans. Electron Devices*, vol. ED-22, pp. 1023-1030, Nov. 1975.

[F5] W. Fawcett, C. Hilsum, and H. Rees, "Optimum semiconductor for microwave devices," *Electron. Lett.*, vol. 5, pp. 313-314, July 1969.

[F6] M. Glicksman, R. Enstrom, S. Mittleman, and J. Appert, "Electron mobility in  $\text{In}_x\text{Ga}_{1-x}\text{As}$  alloys," *Phys. Rev. B*, vol. 9, pp. 1621-1626, Feb. 1974.

[F7] D. Decker, R. Fairman, and C. Nishimoto, "Microwave InGaAs Schottky-barrier-gate field-effect transistors—Preliminary results," in *Proc. 1975 Cornell Conf. on Active Semiconductor Devices for Microwaves and Integrated Optics*, pp. 305-314.

[F8] S. Sze, *Physics of Semiconductor Devices*. New York: Wiley, 1969, pp. 40, 59.

**G. Si and GaAs JFET's**

[G1] S. Teszner, "Gridistor development for the microwave power region," *IEEE Trans. Electron Devices*, vol. ED-19, pp. 355-364, March 1972.

[G2] D. Lecrosnier and G. Pelous, "Ion-implanted FET for power applications," *IEEE Trans. Electron Devices*, vol. ED-21, pp. 113-118, Jan. 1974.

[G3] R. Zuleeg, E. Bledl, and A. Behle, "Broadband GaAs field-effect transistor amplifier," Air Force Avionics Lab., Technical Report AFAL-TR-73-109, Wright-Patterson AFB, March 1973.

[G4] A. Behle and R. Zuleeg, "Fast neutron tolerance of GaAs JFET's operating in the hot electron range," *IEEE Trans. Electron Devices*, vol. ED-19, pp. 993-995, Aug. 1972.

[G5] R. Zuleeg and K. Lehovec, "Radiation effect on GaAs interface," Air Force Cambridge Research Labs., Scientific Report AFCRL-TR-74-0495, Sep. 1974.

[G6] C. Vergnolle, R. Funck, and M. Laviron, "An adequate structure for power microwave FETs," in *1975 Int. Solid-State Circuits Conf., Dig. Tech. Papers*, pp. 168-169.

*Circuits Conf., Dig. Tech. Papers*, pp. 66–67.

[G7] S. Umebachi, K. Asahi, M. Inoue, and G. Kano, "A new heterojunction gate GaAs FET," *IEEE Trans. Electron Devices*, vol. ED-22, pp. 613–614, Aug. 1975.

*H. Si and GaAs IGFET's*

[H1] H. Becke and J. White, "Gallium arsenide insulated-gate field-effect transistors," *1966 Symp. GaAs* (Inst. Phys., Conf. Series No. 3, London, 1967), pp. 219–227.

[H2] T. Miyazaki, N. Nakamura, A. Doi, and T. Tokuyama, "N-channel gallium arsenide MISFET," in *1973 Int. Electron Devices Meeting, Dig. Tech. Papers*, pp. 164–166.

[H3] A. Adams and B. Pruniaux, "GaAs surface film evaluation by ellipsometry and its effect on Schottky barriers," *J. Electrochem. Soc.*, vol. 120, pp. 408–414, March 1973.

[H4] R. Singh and H. Hartnagel, "New method of passivating GaAs with  $\text{Al}_2\text{O}_3$ ," in *1974 Int. Electron Devices Meeting, Dig. Tech. Papers*, pp. 576–578.

[H5] H. Hasegawa, K. Forward, and H. Hartnagel, "New anodic native oxide of GaAs with improved dielectric and interface properties," *Appl. Phys. Lett.*, vol. 26, pp. 567–569, May 1975.

[H6] G. Declerck, T. Hattori, G. May, J. Beaudouin, and J. Meindl, "Some effects of trichloroethylene oxidation on the characteristics of MOS devices," *J. Electrochem. Soc.*, vol. 122, pp. 436–439, March 1975.

[H7] Y. Morita, H. Takahashi, H. Matayoshi, and M. Fukuta, "Si UHF MOS high-power FET," *IEEE Trans. Electron Devices*, vol. ED-21, pp. 733–734, Nov. 1974.

[H8] J. G. Oakes, R. A. Wickstrom, D. A. Tremere, and T. M. S. Heng, "A power silicon microwave MOS transistor," *IEEE Trans. Microwave Theory and Techniques*, this issue, pp. 305–311.

[H9] T. Heng, Westinghouse Research Laboratories, private communication.

[H10] T. Cauge, J. Kocsis, H. Sigg, and G. Vendelin, "Double-diffused MOS transistor achieves microwave gain," *Electronics*, vol. 44, pp. 99–104, Feb. 1971.

[H11] H. Sigg, G. Vendelin, T. Cauge, and J. Kocsis, "D-MOS transistor for microwave applications," *IEEE Trans. Electron Devices*, vol. ED-19, pp. 45–53, Jan. 1972.

[H12] H. Sigg, D. Pitzer, and T. Cauge, "D-MOS for UHF linear and nanosecond switching applications," in *1974 IEEE INTERCON, Dig. Tech. Papers*, Session 32/4, pp. 1–7, March 1974.

[H13] H. Sigg, Signetics Corp., private communication (see also Signetics Data Sheet, SD-203/SD-308).

[H14] R. Ronen and L. Strauss, "The silicon-on-sapphire MOS tetrode, some small-signal features LF to UHF," *IEEE Trans. Electron Devices*, vol. ED-21, pp. 100–109, Jan. 1974.

*I. GaAs MESFET Reliability*

[I1] K. Ohta and M. Ogawa, "Degradation of gold-germanium ohmic contact to n-GaAs," in *1974 IEEE Reliability Physics Symp., Dig. Tech. Papers*, pp. 278–283.

[I2] H. Kohzu, I. Nagasako, M. Ogawa, and N. Kawamura, "Reliability studies of one-micron Schottky-gate GaAs FET," in *1975 Int. Electron Devices Meeting, Dig. Tech. Papers*, pp. 247–250.

[I3] T. Irie, I. Nagasako, H. Kohzu, and K. Sekido, "Reliability study of GaAs MESFET's," *IEEE Trans. Microwave Theory and Techniques*, this issue, pp. 321–328.

[I4] D. Abbott and J. Turner, "Some aspects of GaAs FET reliability," in *1975 Int. Electron Devices Meeting, Dig. Tech. Papers*, pp. 243–246.

[I5] —, "Some aspects of GaAs MESFET reliability," *IEEE Trans. Microwave Theory and Techniques*, this issue, pp. 317–321.

[I6] S. Bellier, R. Haythornthwaite, J. May, and P. Woods, "Reliability of microwave GaAs field-effect transistors," in *Proc. 1975 Reliability Physics Symp.*, pp. 193–199.

[I7] D. Ch'en, H. Cooke, and J. Wholey, "Long-term stabilization of microwave FET's," *Microwave J.*, vol. 18, pp. 60–61, Nov. 1975.

[I8] —, "Microwave FET's with improved amplifier stability," in *1976 Int. Solid-State Circuits Conf., Dig. Tech. Papers*, pp. 160–161.

[I9] S. Bearse, "GaAs FET's: Device designers solving reliability problems," *Microwaves*, vol. 15, pp. 32–52, Feb. 1976.

*J. JFET and MESFET Theory of Operation (Analytic Solutions)*

[J1] W. Shockley, "A unipolar field-effect transistor," *Proc. IRE*, vol. 40, pp. 1365–1376, Nov. 1952.

[J2] J. Turner and B. Wilson, "Implications of carrier velocity saturation in a gallium arsenide field-effect transistor," in *Proc. 1968 Symp. GaAs* (Inst. Phys., Conf. Series No. 7, London, 1969), pp. 195–204.

[J3] K. Drangeid and R. Sommerhalder, "Dynamic performance of Schottky-barrier field-effect transistors," *IBM J. Res. Develop.*, vol. 14, pp. 82–94, March 1970.

[J4] K. Lehovec and R. Zuleeg, "Voltage-current characteristics of GaAs J-FET's in the hot electron range," *Solid-State Electron.*, vol. 13, pp. 1415–1426, Oct. 1970.

[J5] P. Hower and G. Bechtel, "Current saturation and small-signal characteristics of GaAs field-effect transistors," *IEEE Trans. Electron Devices*, vol. ED-20, pp. 213–220, March 1973.

[J6] K. Lehovec and W. Seeley, "On the validity of the gradual channel approximation for junction field-effect transistors with drift velocity saturation," *Solid-State Electron.*, vol. 16, pp. 1047–1054, Sep. 1973.

[J7] R. Fair, "Graphical design and iterative analysis of the dc parameters of GaAs FET's," *IEEE Trans. Electron Devices*, vol. ED-21, pp. 357–362, June 1974.

[J8] A. Grebene and S. Ghandi, "General theory for pinched operation of the junction-gate FET," *Solid-State Electron.*, vol. 12, pp. 573–589, July 1969.

[J9] P. Rossel and J. Cabot, "Output-resistance properties of the GaAs Schottky-gate field-effect transistor in saturation," *Electron. Lett.*, vol. 11, pp. 150–152, April 1975.

[J10] D. Mo and H. Yanai, "Current-voltage characteristics of the junction-gate field-effect transistor with field-dependent mobility," *IEEE Trans. Electron Devices*, vol. ED-17, pp. 577–586, Aug. 1970.

[J11] G. Alley and H. Talley, "A theoretical study of the high frequency performance of a Schottky-barrier field-effect transistor fabricated on a high-resistivity substrate," *IEEE Trans. Microwave Theory and Techniques*, vol. MTT-22, pp. 183–189, March 1974.

[J12] K. Lehovec and R. Miller, "Field distribution in junction field-effect transistors at large drain voltages," *IEEE Trans. Electron Devices*, vol. ED-22, pp. 273–281, May 1975.

*K. JFET and MESFET Theory of Operation (Numerical Solutions)*

[K1] D. Kennedy and R. O'Brien, "Computer-aided two dimensional analysis of the junction field-effect transistor," *IBM J. Res. Develop.*, vol. 14, pp. 95–116, March 1970.

[K2] —, "Two-dimensional analysis of J-FET structures containing a low-conductivity substrate," *Electron. Lett.*, vol. 7, pp. 714–716, Dec. 1971.

[K3] C. Kim and E. Yang, "An analysis of current saturation mechanism of junction field-effect transistors," *IEEE Trans. Electron Devices*, vol. ED-17, pp. 120–127, Feb. 1970.

[K4] C. Kim, "Differential drain resistance of field-effect transistors beyond pinchoff: A comparison between theory and experiment," *IEEE Trans. Electron Devices*, vol. ED-17, pp. 1088–1099, Dec. 1970.

[K5] M. Reiser, "Two-dimensional analysis of substrate effects in junction FET's," *Electron. Lett.*, vol. 6, pp. 493–494, Aug. 1970.

[K6] M. Reiser and P. Wolf, "Computer study of submicrometre FET's," *Electron. Lett.*, vol. 8, pp. 254–256, May 1972.

[K7] M. Reiser, "A two-dimensional numerical FET model for dc, ac, and large-signal analysis," *IEEE Trans. Electron Devices*, vol. ED-20, pp. 35–45, Jan. 1973.

[K8] B. Himsorth, "A two-dimensional analysis of indium-phosphide junction field-effect transistors with long and short channels," *Solid-State Electron.*, vol. 16, pp. 931–939, Aug. 1973.

[K9] —, "A two-dimensional analysis of gallium-arsenide junction field-effect transistors with long and short channels," *Solid-State Electron.*, vol. 15, pp. 1353–1361, Dec. 1972.

[K10] J. Barnes and R. Lomax, "Two-dimensional finite element simulation of semiconductor devices," *Electron. Lett.*, vol. 10, pp. 341–343, Aug. 1974.

[K11] J. Ruch, "Electron dynamics in short channel field-effect transistors," *IEEE Trans. Electron Devices*, vol. ED-19, pp. 652–654, May 1972.

[K12] T. Maloney and J. Frey, "Effects of nonequilibrium velocity-field characteristics on the performance of GaAs and InP field-effect transistors," in *1974 Int. Electron Devices Meeting, Dig. Tech. Papers*, pp. 296–298.

[K13] —, "Frequency limits of GaAs and InP field-effect transistors," *IEEE Trans. Electron Devices*, vol. ED-22, pp. 357–358, June 1975; also corrections in *IEEE Trans. Electron Devices*, vol. ED-22, p. 620, Aug. 1975.

[K14] R. Hockney, R. Warriner, and M. Reiser, "Two-dimensional particle models in semiconductor device analysis," *Electron. Lett.*, vol. 10, pp. 484–486, Nov. 1974.

*L. Equivalent Circuits for MESFET's*

[L1] R. Dawson, "Equivalent circuit of the Schottky-barrier field-effect transistor at microwave frequencies," *IEEE Trans. Microwave Theory and Techniques*, vol. MTT-23, pp. 499–501, June 1975.

[L2] G. Vendelin and M. Omori, "Circuit model for the GaAs MESFET valid to 12 GHz," *Electron. Lett.*, vol. 11, pp. 60–61, Feb. 1975.

[L3] —, "Try CAD for accurate GaAs MESFET models," *Microwaves*, vol. 14, pp. 58–70, June 1975.

[L4] G. D. Vendelin, "Feedback effects in the GaAs MESFET

model," *IEEE Trans. Microwave Theory and Techniques*, this issue, pp. 383-385.

#### M. MESFET Noise Theory

- [M1] H. Rothe and W. Dahlke, "Theory of noisy fourpoles," *Proc. IRE*, vol. 44, pp. 811-818, June 1956.
- [M2] A. Van der Ziel, "Thermal noise in field-effect transistors," *Proc. IRE*, vol. 50, pp. 1808-1812, Aug. 1962.
- [M3] —, "Gate noise in field-effect transistors at moderately high frequencies," *Proc. IEEE*, vol. 51, pp. 461-467, March 1963.
- [M4] A. Van der Ziel and J. Ero, "Small-signal, high-frequency theory of field-effect transistors," *IEEE Trans. Electron Devices*, vol. ED-11, pp. 128-135, April 1964.
- [M5] A. Van der Ziel, "Thermal noise in the hot electron regime in FET's," *IEEE Trans. Electron Devices*, vol. ED-18, p. 977, Oct. 1971.
- [M6] F. Klaassen, "On the influence of hot carrier effects on the thermal noise of field-effect transistors," *IEEE Trans. Electron Devices*, vol. ED-17, pp. 858-862, Oct. 1970.
- [M7] W. Baechtold, "Noise behavior of Schottky barrier gate field-effect transistors at microwave frequencies," *IEEE Trans. Electron Devices*, vol. ED-18, pp. 97-104, Feb. 1971.
- [M8] —, "Noise behavior of GaAs field-effect transistors with short gate lengths," *IEEE Trans. Electron Devices*, vol. ED-19, pp. 674-680, May 1972.
- [M9] H. Statz, H. Haus, and R. Pucel, "Noise characteristics of gallium arsenide field-effect transistors," *IEEE Trans. Electron Devices*, vol. ED-21, pp. 549-562, Sep. 1974.
- [M10] R. Pucel, H. Haus, and H. Statz, "Signal and noise properties of gallium arsenide microwave field-effect transistors," in *Advances in Electronics and Electron Physics*, vol. 38. New York: Academic Press, 1975, pp. 195-265.

#### N. Characterization of FET Noise Performance

- [N1] H. Haus and R. Adler, *Circuit Theory of Linear Noisy Networks*. New York: Wiley, 1959.
- [N2] H. Haus, "IRE standards on methods of measuring noise in linear two ports, 1959," *Proc. IRE*, vol. 48, pp. 60-68, Jan. 1960.
- [N3] H. Fukui, "Available power gain, noise figure and noise measure of two-ports and their graphical representations," *IEEE Trans. Circuit Theory*, vol. CT-13, pp. 137-142, June 1966.
- [N4] A. Leupp and M. Strutt, "High-frequency FET noise parameters and approximation of the optimum source admittance," *IEEE Trans. Electron Devices*, vol. ED-16, pp. 428-431, May 1969.
- [N5] R. Lane, "The determination of device noise parameters," *Proc. IEEE*, vol. 57, pp. 1461-1462, Aug. 1969.
- [N6] R. Kaesser, "Noise factor contours for field-effect transistors at moderately high frequencies," *IEEE Trans. Electron Devices*, vol. ED-19, pp. 164-171, Feb. 1972.
- [N7] A. Anastassiou and M. Strutt, "Experimental gain and noise parameters of microwave GaAs FET's in the L and S bands," *IEEE Trans. Microwave Theory and Techniques*, vol. MTT-21, pp. 419-422, June 1973.
- [N8] —, "Experimental and computed four scattering and four noise parameters of GaAs FET's up to 4 GHz," *IEEE Trans. Microwave Theory and Techniques*, vol. MTT-22, pp. 138-140, Feb. 1974.
- [N9] J. Eisenberg, "Designing amplifiers for optimum noise figure," *Microwaves*, vol. 13, pp. 36-44, April 1974.
- [N10] J. Engberg, "Simultaneous input power match and noise optimization using feedback," in *Proc. 1974 European Microwave Conf.*, pp. 385-389.
- [N11] G. Vendelin, "Feedback effects on the noise performance of GaAs MESFET's," in *1975 Int. Microwave Symp., Dig. Tech. Papers*, pp. 324-326.
- [N12] S. Iversen, "The effect of feedback on noise figure," *Proc. IEEE*, vol. 63, pp. 540-542, March 1975.
- [N13] L. Besser, "Stability considerations of low-noise transistor amplifiers with simultaneous noise and power match," in *1975 Int. Microwave Symp., Dig. Tech. Papers*, pp. 327-329.
- [N14] A. Anastassiou and M. Strutt, "Effect of source lead inductance on the noise figure of a GaAs FET," *Proc. IEEE*, vol. 62, pp. 406-408, March 1974; also, for corrections, see S. Iversen, *Proc. IEEE*, vol. 63, pp. 983-984, June 1975.

#### O. Review Papers on Solid-State Microwave Amplifiers

- [O1] L. Cuccia, "Status report: Modern low noise amplifiers in communication systems," *Microwave System News (MSN)*, vol. 4, pp. 120-132, Aug/Sep 1974 and pp. 79-90, Oct/Nov 1974.
- [O2] J. Magarshack, "Design and applications of solid-state microwave amplifiers," in *Proc. 1975 European Microwave Conf.*, pp. 153-167.
- [O3] N. Osbrink *et al.*, "Review of microwave amplifiers," *Microwave J.*, vol. 18, pp. 27-34, Nov. 1975.

#### P. Signal Distortion in Transistor Amplifiers

- [P1] R. Meyer, M. Shensa, and R. Eschenbach, "Cross modulation and intermodulation in amplifiers at high frequencies," *IEEE J. Solid-State Circuits*, vol. SC-7, pp. 16-23, Feb. 1972.
- [P2] R. Fair, "Harmonic distortion in the junction field-effect transistor with field-dependent mobility," *IEEE Trans. Electron Devices*, vol. ED-19, pp. 9-13, Jan. 1972.
- [P3] C. Liechti and R. Tillman, "Application of GaAs Schottky-gate FET's in microwave amplifiers," in *1973 IEEE Int. Solid-State Circuits Conf., Dig. Tech. Papers*, pp. 74-75.

#### Q. Amplifier Network Analysis and Synthesis

- [Q1] S. Mason, "Power gain in feedback amplifier," *IRE Trans. Circuit Theory*, vol. CT-1, pp. 20-25, June 1954.
- [Q2] J. Rollett, "Stability and power-gain invariants of linear two ports," *IRE Trans. Circuit Theory*, vol. CT-9, pp. 29-32, March 1962.
- [Q3] K. Kurokawa, "Power waves and the scattering matrix," *IEEE Trans. Microwave Theory and Techniques*, vol. MTT-13, pp. 194-202, March 1965.
- [Q4] G. Bodway, "Two port power flow analysis using generalized scattering parameters," *Microwave J.*, vol. 10, pp. 61-69, May 1967.
- [Q5] C. Gledhill and M. Abulela, "Scattering parameter approach to the design of narrow-band amplifiers employing conditionally stable active elements," *IEEE Trans. Microwave Theory and Techniques*, vol. MTT-22, pp. 43-48, Jan. 1974.
- [Q6] K. Kotzebue, "Microwave-transistor power-amplifier design by large-signal  $y$  parameters," *Electron. Lett.*, vol. 11, pp. 240-241, May 1975.
- [Q7] L. Besser, "Design considerations of a 3.1-3.5 GHz GaAs FET feedback amplifier," in *1972 IEEE Int. Microwave Symp., Dig. Tech. Papers*, pp. 230-232.
- [Q8] W. Leighton, R. Chaffin, and J. Webb, "RF amplifier design with large-signal  $s$ -parameters," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-21, pp. 809-814, Dec. 1973.
- [Q9] F. Weinert, "Scattering parameters speed design of high-frequency transistor circuits," *Electron.*, vol. 39, pp. 78-88, Sep. 1966.
- [Q10] R. Anderson, "S-parameter techniques for faster, more accurate network design," *Hewlett-Packard J.*, vol. 18, pp. 13-24, Feb. 1967.
- [Q11] W. Froehner, "Quick amplifier design with scattering parameters," *Electron.*, vol. 40, pp. 100-109, Oct. 1967.
- [Q12] R. Tucker, "Low-noise design of microwave transistor amplifiers," *IEEE Trans. Microwave Theory and Techniques*, vol. MTT-23, pp. 697-700, Aug. 1975.
- [Q13] C. Liechti and R. Tillman, "Design and performance of microwave amplifiers with GaAs Schottky-gate field-effect transistors," *IEEE Trans. Microwave Theory and Techniques*, vol. MTT-22, pp. 510-517, May 1974.
- [Q14] M. Mokari-Bolhassan and T. Trick, "Computer-aided design of distributed-lumped-active networks," *IEEE Trans. Circuit Theory*, vol. CT-18, pp. 187-190, Jan. 1971.
- [Q15] J. Bandler, "Computer aided circuit optimization," in *Modern Filter Theory and Design*, G. Temes and S. Mitra, Ed. New York: John Wiley, 1973.
- [Q16] J. Bandler, J. Popovic, and V. Jha, "Cascaded network optimization program," *IEEE Trans. Microwave Theory and Techniques*, vol. MTT-22, pp. 300-308, March 1974.
- [Q17] E. Sanchez-Sinencio and T. Trick, "CADMIC-computer aided design of microwave integrated circuits," *IEEE Trans. Microwave Theory and Techniques*, vol. MTT-22, pp. 309-316, March 1974.
- [Q18] C. Charalambous, "A unified review of optimization," *IEEE Trans. Microwave Theory and Techniques*, vol. MTT-22, pp. 289-300, March 1974.
- [Q19] N. Kuhn, "CAD with graphics make circuit design a science," *Microwaves*, vol. 13, pp. 42-50, June 1974.
- [Q20] W. Ku, W. Petersen, and A. Podell, "New results on the design of broadband microwave bipolar and FET amplifiers," in *1974 IEEE Int. Symp. Microwave Theory and Techniques, Dig. Tech. Papers*, pp. 357-359.
- [Q21] W. Ku *et al.*, "Microwave octave-band GaAs FET amplifiers," in *1975 IEEE Int. Symp. Microwave Theory and Techniques, Dig. Tech. Papers*, pp. 69-72.
- [Q22] D. Mellor, "Insertion loss synthesis of matching networks for microwave amplifiers," in *1975 IEEE Int. Solid-State Circuits Conf., Dig. Tech. Papers*, pp. 68-69, 214.
- [Q23] D. Mellor and J. Linvill, "A complete computer program for the synthesis of matching networks for microwave amplifiers," in *1975 IEEE Int. Symp. Microwave Theory and Techniques, Dig. Tech. Papers*, pp. 191-193.
- [Q24] —, "Synthesis of interstage networks of prescribed gain

versus frequency slopes," *IEEE Trans. Microwave Theory and Techniques*, vol. MTT-23, pp. 1013–1020, Dec. 1975.

[Q25] N. Marshall, "Optimizing multi-stage amplifiers for low noise," *Microwaves*, vol. 13, pp. 62–64, April 1974.

[Q26] —, "Optimizing multi-stage amplifiers for linearity," *Microwaves*, vol. 13, pp. 60–64, May 1974.

[Q27] K. Kurokawa, "Design theory of balanced transistor amplifiers," *Bell System Tech. J.*, vol. 44, pp. 1675–1698, Oct. 1965.

[Q28] S. Lazar, "Solid-state power amplifiers for S-band phased array radar," *Microwave System News*, vol. 5, pp. 77–84, Feb./Mar. 1975.

*R. Performance of Small-Signal MESFET Amplifiers*

[R1] P. Clouser and V. Risser, "C-band FET amplifiers," in *1970 IEEE Int. Solid-State Circuits Conf., Dig. Tech. Papers*, pp. 52–53.

[R2] W. Baechtold, "Ku-band GaAs FET amplifier and oscillator," *Electron. Lett.*, vol. 7, pp. 275–276, May 1971.

[R3] —, "X- and Ku-band amplifiers with GaAs Schottky-barrier field-effect transistors," *IEEE J. Solid-State Circuits*, vol. SC-8, pp. 54–58, Feb. 1973.

[R4] S. Arnold, "Single and dual-gate GaAs FET integrated amplifiers in C-band," in *1972 IEEE Int. Microwave Symp., Dig. Tech. Papers*, pp. 233–234.

[R5] J. Eisenberg and R. Disman, "Design a 4 to 8 GHz FET amplifier with a 7 dB noise figure," *Microwaves*, vol. 12, pp. 52–56, Feb. 1973.

[R6] C. Ch'en and A. Woo, "A low-noise C-band GaAs FET amplifier," 1974 IEEE Int. Microwave Symposium, Session 20, Late News Paper.

[R7] G. Vendelin, J. Archer, and G. Bechtel, "A low-noise integrated S-band amplifier," in *1974 IEEE Int. Solid-State Circuits Conf., Dig. Tech. Papers*, pp. 176–177.

[R8] D. James, R. Douville, R. Breithaupt, and A. Van Koughnett, "A 12 GHz field-effect transistor amplifier for communications satellite applications," in *Proc. 1974 European Microwave Conf.*, pp. 97–101.

[R9] N. Slaymaker and J. Turner, "Microwave FET amplifiers with centre frequencies between 1 and 11 GHz," in *Proc. 1973 European Microwave Conf.*, vol. 1, Paper A.5.1.

[R10] N. A. Slaymaker, R. A. Soares, and J. A. Turner, "GaAs MESFET small-signal X-band amplifiers," *IEEE Trans. Microwave Theory and Techniques*, this issue, pp. 329–337.

[R11] H. Luxton, "Gallium-arsenide field-effect transistors—Their performance and application up to X-band frequencies," in *Proc. 1974 European Microwave Conf.*, pp. 92–96.

[R12] R. Pengelly, "Broadband lumped-element X-band GaAs FET amplifiers," *Electron. Lett.*, vol. 11, pp. 58–60, Feb. 1975.

[R13] —, "Broadband lumped-element X-band GaAs FET amplifiers," in *Proc. 1975 European Microwave Conf.*, pp. 301–305.

[R14] R. Soares and J. Turner, "Tunable X-band GaAs FET amplifier," *Electron. Lett.*, vol. 11, pp. 474–475, Sep. 1975.

[R15] M. Walker, F. Mauch, and T. Williams, "Cover X-band with an FET amplifier," *Microwaves*, vol. 14, pp. 36–45, Oct. 1975.

[R16] D. Ch'en, Avantek, private communication.

[R17] M. Walker, Watkins-Johnson Company, private communication.

#### S. Performance of MESFET Amplifiers at Low Temperatures

[S1] B. Loriou, M. Bellec, and M. LeRouzic, "Performances à basse température d'un transistor hyperfréquences faible bruit à effet de champ," *Electron. Lett.*, vol. 6, pp. 819–820, Dec. 1970.

[S2] J. Leost and B. Loriou, "Propriétés à basse température des transistors GaAs à effet de champ hyperfréquence," *Hyperfréquences*, vol. 54, pp. 514–522, December 1974.

[S3] J. Jimenez, J. Oliva, and A. Septier, "Very low noise cryogenic MESFET amplifier," in *Proc. 1973 European Microwave Conf.*, vol. 1, Paper A.5.2.

[S4] P. Bura, "Operation of 6 GHz FET amplifier at reduced ambient temperature," *Electron. Lett.*, vol. 10, pp. 181–182, May 1974.

[S5] C. Liechti, R. Lerrick, and D. Mellor, "A cooled GaAs MESFET amplifier operating at 12 GHz with 1.6 dB noise figure," in *Proc. 1975 European Microwave Conf.*, pp. 306–309.

[S6] C. A. Liechti and R. B. Lerrick, "Performance of GaAs MESFET's at low temperatures," *IEEE Trans. Microwave Theory and Techniques*, this issue, pp. 376–381.

#### T. Performance of Medium-Power MESFET Amplifiers

[T1] D. Hornbuckle and L. Kuhlman, "Broad-band medium-power amplification in the 2–12.4-GHz range with GaAs MESFET's," *IEEE Trans. Microwave Theory and Techniques*, this issue, pp. 338–342.

[T2] Y. Arai, T. Kouno, T. Horimatsu, and H. Komizo, "A 6-GHz four-stage GaAs MESFET power amplifier," *IEEE Trans.*

*Microwave Theory and Techniques*, this issue, pp. 381–383.

[T3] R. E. Neidert and H. A. Willing, "Wide-band gallium arsenide powder MESFET amplifier," *IEEE Trans. Microwave Theory and Techniques*, this issue, pp. 342–350.

[T4] P. Bura and D. Cowan, "Highly linear medium power 11 GHz FET amplifier," in *1976 Int. Solid-State Circuits Conf., Dig. Tech. Papers*, pp. 158–159.

[T5] F. Sechi, "High-gain 1 W FET amplifier operating in G band," in *1976 Int. Solid-State Circuits Conf., Dig. Tech. Papers*, pp. 162–163.

[T6] R. Camisa, J. Goel, and I. Drukier, "GaAs MESFET linear power amplifier stage giving 1 W," *Electron. Lett.*, vol. 11, pp. 572–573, Nov. 1975.

#### U. MESFET Oscillators

[U1] M. Maeda, S. Takahashi, and H. Kodera, "CW oscillation characteristics of GaAs Schottky-barrier gate field-effect transistors," *Proc. IEEE*, vol. 63, pp. 320–321, Feb. 1975.

[U2] M. Maeda, K. Kimura, and H. Kodera, "Design and performance of X-band oscillators with GaAs Schottky-gate field-effect transistors," *IEEE Trans. Microwave Theory and Techniques*, vol. MTT-23, pp. 661–667, Aug. 1975.

[U3] P. Pucel, R. Bera, and D. Masse, "Experiments on integrated gallium-arsenide FET oscillators at X-band," *Electron. Lett.*, vol. 11, pp. 219–220, May 1975.

[U4] N. Slaymaker and J. Turner, "Alumina microstrip GaAs FET 11 GHz oscillator," *Electron. Lett.*, vol. 11, pp. 300–301, July 1975.

[U5] M. Omori and C. Nishimoto, "Common-gate FET oscillator," *Electron. Lett.*, vol. 11, pp. 369–371, Aug. 1975.

[U6] D. James, G. Painchaud, E. Minkus, and W. Hoefer, "Stabilized 12 GHz MIC oscillator using GaAs FET's," in *Proc. 1975 European Microwave Conf.*, pp. 296–300.

[U7] H. Abe, Y. Takayama, A. Higashisaka, R. Yamamoto, and M. Takeuchi, "A high-power microwave GaAs FET oscillator," in *1976 Int. Solid-State Circuits Conf., Dig. Tech. Papers*, pp. 164–165.

[U8] R. Pucel, R. Bera, and D. Masse, "An evaluation of GaAs FET oscillators and mixers for integrated front-end applications," in *1975 IEEE Int. Solid-State Circuits Conf., Dig. Tech. Papers*, pp. 62–63.

#### V. MESFET Mixers

[V1] J. Sitch and P. Robson, "The performance of GaAs field-effect transistors as microwave mixers," *Proc. IEEE*, vol. 61, pp. 399–400, March 1973.

[V2] R. Pucel, D. Masse, and R. Bera, "Integrated GaAs FET mixer performance at X-band," *Electron. Lett.*, vol. 11, pp. 199–200, May 1975.

[V3] —, "Performance of GaAs MESFET mixers at X-band," *IEEE Trans. Microwave Theory and Techniques*, this issue, pp. 351–360.

[V4] O. Kurita and K. Morita, "Microwave MESFET mixer," *IEEE Trans. Microwave Theory and Techniques*, this issue, pp. 361–366.

[V5] S. Komaki, O. Kurita, and T. Memita, "GaAs MESFET regenerator for phase-shift keying signals at the carrier frequency," *IEEE Trans. Microwave Theory and Techniques*, this issue, pp. 367–372.

#### W. High-Speed Logic

[W1] K. Drangeid *et al.*, "A memory-cell array with normally off-type Schottky-barrier FET's," *IEEE J. Solid-State Circuits*, vol. SC-7, pp. 277–282, Aug. 1972.

[W2] O. Cahen, G. Cachier, and J. Puron, "A subnanosecond switching circuit," in *1974 IEEE Int. Solid-State Circuits Conf., Dig. Tech. Papers*, pp. 110–111.

[W3] R. Van Tuyl and C. Liechti, "High speed integrated logic with GaAs MESFET's," *IEEE J. Solid-State Circuits*, vol. SC-9, pp. 269–276, Oct. 1974.

[W4] —, "High speed GaAs MSI," in *1976 IEEE Int. Solid-State Circuits Conf., Dig. Tech. Papers*.

[W5] E. Kohn, "Normally-off MESFET with fast switching behavior," *Electron. Lett.*, vol. 10, p. 505, Nov. 1974.

[W6] H. Beneking and E. Kohn, "High-speed GaAs MESFET differential amplifier stage with integrated current source," in *1974 Int. Electron Devices Meeting, Dig. Tech. Papers*, pp. 292–295.

[W7] H. Beneking and W. Filensky, "The GaAs MESFET as a pulse regenerator in the gigabit per second range," *IEEE Trans. Microwave Theory and Techniques*, this issue, pp. 385–386.

[W8] J. Notthoff and R. Zuleeg, "High speed, low power GaAs JFET integrated circuits," in *1975 Int. Electron Devices Meeting, Dig. Tech. Papers*, p. 624.

- [W9] V. Vodicka and R. Zuleeg, "Ion implanted GaAs enhancement mode JFET's," in *1975 Int. Electron Devices Meeting, Dig. Tech. Papers*, pp. 625-628.
- [W10] T. Sudo *et al.*, "A monolithic 8 pJ/2 GHz logic family," *IEEE J. Solid State Circuits*, vol. SC-10, pp. 524-529, Dec. 1975.
- [W11] D. DiPietro, "A 5 GHz  $f_T$  monolithic IC process for high-speed digital circuits," in *1975 Int. Solid-State Circuits Conf., Dig. Tech. Papers*, pp. 118-119.
- [W12] L. Cuccia, J. Spilker, and D. Magill, "Digital communication at gigahertz data rates," Part I, *Microwave J.*, vol. 13, pp. 80-93, Jan. 1970; Part II, *Microwave J.*, vol. 13, pp. 87-92, Feb. 1970; Part III, *Microwave J.*, vol. 13, pp. 75-80, April 1970.
- [W13] L. Cuccia, "A technology status report on high-speed MPSK digital modulation systems," in *Proc. 1974 European Microwave Conf.*, p. 505.
- [W14] C. Ryan, "Bipolar IC's for microwave signal processing," in *1975 IEEE Int. Microwave Symposium, Dig. Tech. Papers*, pp. 37-39.

**X. Fabrication Technologies**

- [X1] S. Middelhoek, "Projection masking, thin photoresist layers and interface effects," *IBM J. Res. Develop.*, vol. 14, pp. 117-124, March 1970.
- [X2] —, "Metallization processes in fabrication of Schottky-barrier FET's," *IBM J. Res. Develop.*, vol. 14, pp. 148-151, March 1970.
- [X3] H. Smith, "Fabrication techniques for surface-acoustic-wave and thin-film optical devices," *Proc. IEEE*, vol. 62, pp. 1361-1387, Oct. 1974.
- [X4] C. Stolte, "Device quality n-type layers produced by ion implantation of Te and S into GaAs," in *1975 Int. Electron Devices Meeting, Dig. Tech. Papers*, pp. 585-587.

# Submicron Single-Gate and Dual-Gate GaAs MESFET's with Improved Low Noise and High Gain Performance

MASAKI OGAWA, KEIICHI OHATA, TAKASHI FURUTSUKA, AND NOBUO KAWAMURA

**Abstract**—Microwave performance of single-gate and dual-gate GaAs MESFET's with submicron gate structure is described. Design consideration and device technologies are also discussed. The performance of these GaAs MESFET's exceeds previous performance with regard to lower noise and higher gain up to  $X$  band: 2.9-dB noise figure (NF) and 10.0-dB associated gain at 12 GHz for a 0.5- $\mu$ m single-gate MESFET, and 3.9-dB NF and 13.2-dB associated gain at the same frequency for a dual-gate MESFET with two 1- $\mu$ m gates.

## I. INTRODUCTION

SINGLE-GATE [1], [2] and dual-gate [3], [4] GaAs MESFET's have been extensively developed, showing low noise and high gain properties at microwave frequencies. Improvements have been successfully attained mainly due to gate length reduction. As a result of advanced photolithography 0.5- $\mu$ m-gate MESFET's with 4-5-dB noise figures (NF) at 12 GHz have been realized [2].

However, calculations on the NF [5] revealed that the observed NF values were still large compared with the theoretical ones. The discrepancy is considered to be partly due to the degraded crystal quality in the epitaxial film near the substrate and partly due to the effects of parasitic resistances. This suggests that refinement of epitaxial growth

and metallization technologies is more urgently required than further gate length reduction to produce decreased NF.

The purpose of this work is to realize improved GaAs MESFET's based on refinement of these technologies. Details of epitaxial wafer preparation and of contact metallization processes are described in Section II. Design consideration and fabrication of single-gate (0.5- $\mu$ m-gate and 1.0- $\mu$ m-gate) and dual-gate (1- $\mu$ m-1- $\mu$ m-gate) MESFET's are described in Section III. MESFET microwave performance is described in Section IV.

## II. DEVICE TECHNOLOGY REFINEMENT

### A. Epitaxial Wafer Preparation

The gallium arsenide wafer used in this work consists of a thin and highly doped n-type active layer, a high-resistivity buffer layer, and a semi-insulating substrate. Both buffer and active layers were successively grown on the substrate in the modified Ga/AsCl<sub>3</sub>/H<sub>2</sub> reaction system [6].

*1) Buffer Layer:* At the dc bias point, where minimum NF is observed, carriers are confined in an approximately 100- $\text{\AA}$ -wide n-type epitaxial region adjacent to the substrate. Thus crystal properties, such as electron mobility and impurity concentration in this region, have the dominant effect on MESFET performance.

Electron mobility degradation in the region near the